Quantum Electrodynamics

Outline

Classical versus Quantum Theory Force/interaction mediated by exchange of field guanta Virtual Particles Propagator Feynman Diagrams **Feynman Rules** Matrix Flements Cross sections Electromagnetic vertex Coupling strength Coupling constant Conservation laws QED processes Electron-proton scattering Electron-positron annihilation Higher order Diagrams Precision QED tests Running of alpha **Dirac Equation** Appendix

Quantum Electrodynamics

Quantum Theory (QED)

of Electromagnetic Interactions

Classical Electromagnetism

Forces arise from Potentials V(r) act instantaneously at a distance

QED Picture

Forces described by exchange of virtual field quanta - photons

Matrix element

Full derivation in 2nd order perturbation theory Gives propagator term $1/(q^2 - m^2)$ for exchange boson Equivalent to contraring in Vukeus potential

Equivalent to scattering in Yukawa potential

Virtual Particles

Electromagnetic Interaction

Forces between two charged particles are due to exchange of virtual photons

Example: electron-electron scattering: e- e- → e- e-

"Photon mediates electromagnetic interaction" No action at a distance required!

Virtual Particles

Do not have mass of physical particle

 $m_X^2 \neq E_X^2 - \vec{p}_X^2$

known as "Off mass-shell" e.g. non-zero for photon 4-momentum of virtual particle $q^{\mu} = (E_q, \vec{q})$ is energy and momentum transfer between scattered particles Virtual mass-squared $q^2 = E_X^2 - p_X^2$ $q^2 > 0$ and $q^2 < 0$ possible Propagator - how far particle is off mass-shell Internal lines, not observable must observe $\Delta E \Delta t \approx \hbar$

Feynman Diagrams

A Feynman diagram is a pictorial representation of a process corresponding to a particular transition amplitude Aitchison & Hey "Gauge Theories in Particle Physics"

Basic Principle Transition amplitude for all processes - scattering, decay, absorption, emission - is described

by Feynman Diagrams

Feynman diagrams a most useful tool in modern particle physics and will be used a lot in this course! Conventions

Time flows from left to right (sometimes upwards) Fermions are solid lines with arrows Bosons are wavy or dashed lines

Feynman Rules

Allow to calculate quantitative results of transition Derived from quantum field theory (QFT)

Nuclear and Particle Physics

Electromagnetic Vertex

QED Feynman Diagram

- Initial state fermion
- Absorption or emission of photon
- Final state fermion

Examples: $e^- \rightarrow e^- \gamma$ Bremsstrahlung

 $e^{-} + \gamma \rightarrow e^{-}$ Photoelectric effect

All electromagnetic interactions are described by vertex and photon propagator

Coupling Strength

Transition amplitude proportional to fermion charge $M_{fi} \propto e$

Probability/rate of γ emission or absorption

rate $\propto |M_{fi}|^2$

Rate proportional to coupling constant $\boldsymbol{\alpha}$

Coupling Constant

Fine structure constant $\alpha \propto e^2$

Momentum and energy conserved at all vertices Charge is conserved in all QED vertices Fermion flavour is conserved $e^- \rightarrow e^-\gamma$ exists, but not $c \rightarrow u \gamma$ QED vertex also conserves parity

Nuclear and Particle Physics Franz Muheim

$$\alpha = \frac{e^2}{4\pi\varepsilon_0\hbar c} \cong \frac{1}{137} \quad \text{SI}$$

Basic QED Processes

(g) vacuum $\rightarrow e^+ + e^- + \delta$ (h) $\delta + e^+ + e^- \rightarrow vacuum$

Initial and final state particle satisfy relativistic four-momentum conservation $m^2 = E^2 - p^2$ In free space - Energy conservation violated for above diagrams if all particles are real

Nuclear and Particle Physics

Feynman Rules for QED

Each line and vertex in Feynman diagram corresponds to a term in the matrix element Initial and final state fermions Fermion wave function Ψ (spinor when including spin) Initial and final state bosons Boson wave function includes polarisation Internal virtual photons Photon propagator $1/(q^2 - m^2) = 1/q^2$ Internal fermions Spinor propagator exchanged between charged particles similar in structure to photon propagator Vertex Coupling constant $\sqrt{\alpha} \sim e$

Example:

electron-muon scattering: e- μ - \rightarrow e- μ -

Transition amplitude

 γ^{μ} and $g^{\mu\nu}$ are 4x4 matrices account for spin-structure of electromagnetic interaction

Nuclear and Particle Physics

Electron-Proton Scattering

Matrix Element

Transition Amplitude use Feynman rules simple if neglecting spins

$$M \propto e \frac{1}{q^2} e = \frac{e^2}{q^2} = \frac{4\pi\alpha}{q^2}$$

Cross section

Probability for scattering

$$\frac{d\sigma}{d\Omega} \propto \left|M\right|^2 \propto \frac{e^4}{q^4} = \frac{16\pi^2 \alpha^2}{q^4}$$

4-momentum transfer

$$q^{2} = q^{\mu}q_{\mu} = (p_{f}^{\mu} - p_{i}^{\mu})^{2} = p_{f}^{2} + p_{i}^{2} - 2p_{f} \cdot p_{i}$$

$$= 2m_{e}^{2} - 2(E_{f}E_{i} - |\vec{p}_{f}||\vec{p}_{i}|\cos\theta) \qquad p_{i}^{\mu} = (E_{f}, \vec{p}_{f})$$

$$= -4E_{f}E_{i}\sin^{2}\left(\frac{\theta}{2}\right) \qquad \text{when neglecting } m_{e}$$

Rutherford Scattering

Elastic $E_f = E_i = E$, neglect proton recoil $\frac{d\sigma}{d\Omega}\Big|_{Lab} = \frac{\alpha^2}{4E^2 \sin^4\left(\frac{\theta}{2}\right)}$ $\frac{d\sigma}{d\Omega}\Big|_{Lab}\Big| = \frac{\alpha^2}{4E^2 \sin^4\left(\frac{\theta}{2}\right)} \frac{E_f}{E_i} \left(\cos^2\left(\frac{\theta}{2}\right) - \frac{q^2}{2M_p^2}\sin^2\left(\frac{\theta}{2}\right)\right)$

e+e- Annihilation

<u>Matrix element</u>

Neglecting spin effects

$$M \propto e \frac{1}{q^2} e = \frac{e^2}{q^2} = \frac{4\pi\alpha}{q^2}$$

e^+ q^2 $\sqrt{\alpha}$ q^2 $\sqrt{\alpha}$ μ^-

Cross section

Work in centre-of-mass frame 4-momentum transfer $q^2 = q^{\mu}q_{\mu} = (E_1 + E_2)^2 - (\vec{p}_1 + \vec{p}_2)^2 = (2E)^2 = s$ Use Fermi's Golden Rule, density of final state

Use Fermi's Golden Rule, density of final stat normalisation of wave function

$$\frac{d\sigma}{d\Omega}\Big|_{\rm CoM} = 2\pi \big|M\big|^2 \frac{E^2}{(2\pi)^3} = \frac{\alpha^2}{s}$$

Correct treatment of spins

Higher Order Diagrams

e

e

 μ^+

μ

 α

QED

time dependent perturbation theory

Lowest order

$$\sigma \propto \left| M \right|^2 \propto \alpha^2 \approx \frac{1}{137^2}$$

Second order

$$\sigma \propto \left| M \right|^2 \propto \alpha^4 \approx \frac{1}{137^4}$$

Higher orders

Order n suppressed by $\alpha = 1/137^{2n}$ Lowest order dominates if coupling constant α is small QED converges rapidly

QED Precision Tests

Magnetic moment Couples to spin of electron $\vec{\mu} = g \mu_B \vec{S}$ where $\mu_B = \frac{e\hbar}{2m c}$ Dirac Equation predicts gyromagnetic ratio g = 2for point-like particles Anomalous magnetic moment a = (g-2)/2 Higher order corrections Bullet represents external electromagnetic field muon spin-precession vacuum vertex polarisation in magnetic field Vertex $a_e = a_\mu = \frac{\alpha}{2\pi} = 1.1617 \cdot 10^{-3}$ 2 loops - 7 Feynman diagrams 3 loops - 72 Feynman diagram 4 loops - 891 Feynman diagra QED is most precise theory in physics Experiment $a_e = (11596521.869 \pm 0.041) \cdot 10^{-10}$ $a_{p} = (11596521.3 \pm 0.3) \cdot 10^{-10}$ Theory electrons $a_{\mu}(\exp) = 11\,659\,208(6) \times 10^{-10} \ (0.5\,\mathrm{ppm}),$ muons $a_{\mu}(SM) = 11\,659\,181(8) \times 10^{-10} \ (0.7 \text{ ppm})$ **Nuclear and Particle Physics** Franz Muheim 11

Running of α

Strength of electromagnetic interaction $\alpha = e^2/4\pi$ is not a constant at all distances

Vacuum

Not empty, around free electron creation and annihilation

of virtual electron-positron pairs

Screening

Bare charge and mass of electron only visible at very short distances

 α increases with with larger momentum transfer

Dirac Equation

1st order in time derivative

2nd order in space derivatives

Klein-Gordon equation

2nd order in space and time derivatives

$$\left(-\frac{\partial^2}{\partial t^2}+\vec{\nabla}^2\right)\psi=m^2\psi$$
 or $\left(\frac{\partial^2}{\partial t^2}-\vec{\nabla}^2+m^2\right)\psi=0$

negative energies (E < 0)

and negative probability densities ($|\Psi|^2 < 0$)

Dirac Equation

1st order in time and space derivatives

$$\left(i\gamma^{0}\frac{\partial}{\partial t}+i\vec{\gamma}\cdot\vec{\nabla}-m\right)\Psi=0 \quad \text{or} \quad \left(i\gamma^{\mu}\partial_{\mu}-m\right)\Psi=0$$

 γ^{μ} are 4x4 matrices Solutions of Dirac equation Wave function with 4-component spinor

$$\Psi(\vec{x},t) = N u(p) \exp(-ip_{\nu} x^{\nu}) \implies E = \pm \sqrt{p^2 + m^2}$$

- 2 positive energy solutions, E > 0
- 2 negative energy solutions, E < 0

Dirac Equation not examinable Nuclear and Particle Physics Franz Muheim

