Weak Interaction

Outline

Introduction to weak interactions Charged current (CC) interactions Neutral current (NC) Weak vector bosons W[±] and 7⁰ Weak charged interactions Beta decay Flavour changing charged current W[±] boson propagator Fermi coupling constant Parity violation Muon decay Decay rate /lifetime Lepton Universality W[±] boson couplings for leptons Tau decays Weak quark decays W[±] boson couplings for quarks Cabibbo angle, CKM mechanism Spectator model

Weak Interactions

Account for large variety of physical processes Muon and Tau decays, Neutrino interactions Decays of lightest mesons and baryons Z^0 and W^{\pm} boson production at $\sqrt{s} \sim O(100 \text{ GeV})$ Natural radioactivity, fission, fusion (sun)

Major Characteristics

Long lifetimes

Small cross sections (not always)

"Quantum Flavour Dynamics"

Charged Current (CC) Neutral Current (NC) mediated by exchange of

W± boson

Z⁰ boson

Intermediate vector bosons W[±] and Z⁰ have mass

Self Interactions

of W^{\pm} and Z^{0} also W^{\pm} and γ

Nuclear and Particle Physics

Beta Decay

Weak Nuclear Decays

See also Nuclear Physics

Recall $\beta^+ = e^+$

Continuous energy spectrum of e- or e+

→ 3-body decay, Pauli postulates neutrino, 1930

Interpretation

Fermi, 1932 Bound n or p decay

$$n \to pe^- \overline{\nu}_e$$
$$N(t) = N(0) \exp\left(\frac{-t}{\tau_n}\right)$$
$$\tau_n = 885.7 \pm 0.8 \text{ s}$$

 $\tau_{1/2} = \tau_n \ln 2 = 613.9 \pm 0.6 \,\mathrm{s}$

$p \rightarrow ne^+ v_e$	(bound p)
$\tau_p > 10^{32} \text{ y}$	(p stable)

Modern quark level picture

Weak charged current mediated by exchange of virtual W[±] boson

Nuclear and Particle Physics

Weak Charged Interactions

Fundamental Vertex

Weak Charged Current

QED

Flavour Changing

Weak charged current changes

lepton and quark flavours

W[±] boson transforms v_e into e^- , u into d-quark

Only weak interaction is flavour changing

Weak Charged Current

 W^{\pm} boson couples to weak charge g_W of neutrino/electron or up/down quark pair

Coupling strength $\propto g_W$

For each vertex add factor g_W to matrix element

Probability for weak vertex

cross section or decay rate $\propto g_{W}{}^{2}$

<u>W[±] Boson Propagator</u>

W boson has mass M_W

Recall photons and gluons are massless

 \rightarrow Add propagator term 1/(q² - M_W²)

to matrix element/amplitude

Nuclear and Particle Physics

Fermi Theory of Weak Interaction

<u>W[±] Boson Propagator</u>

for small $q^2 \leftrightarrow M_{W}^2 (q^2 \rightarrow 0)$ $1/(q^2 - M_W^2) \rightarrow 1/M_W^2$ Propagator is constant

Fermi Coupling Constant G_F

Weak coupling constant includes propagator

 $G_F \propto \frac{g_W^2}{M_W^2}$ exact $\frac{G_F}{\sqrt{2}} = \frac{g_W^2}{8M_W^2}$

Fermi

different from QED & QCD Perkins, p 151&210 g_W dimensionless \rightarrow units of G_F are GeV⁻² $G_{\rm F}/(\hbar c)^3 = 1.16637(1) \cdot 10^{-5} \, GeV^{-2}$

Range of Weak Interaction

Massive exchange boson \leftrightarrow short range $R_{weak} = \frac{\hbar c}{M_{ec}c^2} \approx 2 \cdot 10^{-18} \text{ m} = 0.002 \text{ fm} << 0.1 \text{ fm}$ Analogoüs to Yukawa interaction

Strength of Weak Interaction

 $G_F \& M_W \implies g_W = 0.66 \implies \alpha_W = \frac{g_W^2}{4\pi} = \frac{1}{29} > \alpha_{em} = \frac{1}{137}$ Not intrinsically weak at low q^2 weak due to large M_{W} $\alpha_s \approx 0.2 > \alpha_w \approx 0.03 > \alpha_{em} \approx 0.008$ all running Will these meet at high energy? - unification? Nuclear and Particle Physics

Parity Violation

<u>Parity P</u>

Intrinsic quantum number of particles Conserved in strong and electromagnetic interactions

Kaon Decays

Observe $K^+ \rightarrow \pi^+ \pi^0$ and $K^+ \rightarrow \pi^+ \pi^- \pi^+$ decays Parity of K^+ and π^+ $P(K^+) = P(\pi^+) = -1$ Parity of final states $P(\pi^+\pi^0) = P_\pi P_\pi (-1)^{L=0} = 1$ \rightarrow Puzzle $P(\pi^+\pi^-\pi^+) = P_\pi P_\pi P_\pi (-1)^{L=0} = -1$

Parity Violation in Weak Interactions

1956 proposed by Lee and Yang 1957 experimentally confirmed by Wu et al Measure e- from ⁶⁰Co beta decay ⁶⁰Co \rightarrow ⁶⁰Ni^{*}e⁻ \overline{v}_e Polarised ⁶⁰Co spin J aligned to magnetic field B at 0.01 K B,J \hat{p} $x \rightarrow -x$ $p \rightarrow -p$

 $L = r \times p \rightarrow (-r) \times (-p) = L$ If parity conserved expect equal e- rates parallel and antiparallel to B-field and spin Observe asymmetry \rightarrow Parity violated

Fundamental lepton with mass m_{μ} = 105.7 MeV does not interact strongly Electromagnetic decay $\mu^+ \rightarrow e^+\gamma$ is forbidden Decays weakly - flavour changing $\bar{\nu}_e(p_2)$ $\begin{array}{l} \mu^{-} \rightarrow e^{-} \, \overline{\nu}_{e} \, \nu_{\mu} \\ \mu^{+} \rightarrow e^{+} \, \nu_{e} \, \overline{\nu}_{\mu} \end{array} \quad \mu^{-}(p_{1}) \ - \end{array}$ $e(p_4)$ Amplitude and Decay Rate $\nu_{\mu}(p_3)$ Matrix element / amplitude $\propto g_W g_W 1/(q^2 - M_W^2)$ $q^2 \leftrightarrow M_W^2 \rightarrow \text{decay rate } \Gamma_\mu \propto G_F^2$ dimensions $\rightarrow \Gamma_{\rm u} \propto G_{\rm F}^2 \, {\rm m_u}^5$ Total decay rate on lifetime τ $\frac{1}{\tau_{\mu}} = \Gamma_{\mu} = \frac{G_F^2 m_{\mu}^5}{192\pi^3}$ $(\hbar = c = 1)$ <u>Measurements</u>

Lifetime $\tau_{\mu} = 2.19703(4) 10^{-6} s$ Mass $m_{\mu} = 105.658369(9) \text{ MeV}$ $\rightarrow \quad G_{F} = 1.16637(1) \cdot 10^{-5} \text{ GeV}^{-2}$ weak coupling constant G_{F} is measured in muon decay see 4th year projects for measuring τ_{μ} and m_{μ}

Lepton Universality in Weak Interaction

<u>Tau Decays</u>

Weak Interaction of Quarks

Weak charged quark currents Are weak charged quark currents also universal? e.g. is $M(d \rightarrow uW^{-}) = M(\mu^{-} \rightarrow v_{\mu}W^{-})$? Nature is not quite that simple **Comparison** Measure G_F in muon and nuclear beta decay $W^- e(p_4) \qquad n \begin{cases} d \\ d \\ u \end{cases}$ Obtain ratio $G_F(beta)/G_F(muon) = 0.974(3)$ Charged weak current almost equal for leptons and up/down guarks Leptonic Pion and Kaon Decays Observe $\pi^{\scriptscriptstyle +} \to \mu^{\scriptscriptstyle +} \, \nu_\mu$ and $K^{\scriptscriptstyle +} \to \mu^{\scriptscriptstyle +} \, \nu_\mu$ $\pi^{+} \left\{ \underbrace{\begin{array}{c} u \\ \hline \overline{d} \end{array}}^{u} \underbrace{W_{,}^{+} q^{\mu}}_{f_{\pi} V_{ud}} \\ \underbrace{W_{,}^{+} q^{\mu}}_{V_{\mu}, k^{\mu}} K^{+} \left\{ \underbrace{\begin{array}{c} u \\ \hline \overline{s} \end{array}}^{u} \underbrace{W_{,}^{+} q^{\mu}}_{f_{K} V_{us}} \right\} \right\}$ v., k^µ Evidence for flavour changing coupling $u \rightarrow sW^+$ between quark generations Rate Γ (K⁺ $\rightarrow \mu^+ \nu_{\mu}$) \approx 5% expected Γ ($\pi^+ \rightarrow \mu^+ \nu_{\mu}$)

Matrix element $M(u \rightarrow sW^{+}) \sim sin\theta_{C}$

 $M(u \rightarrow dW^+) \sim \cos\theta_C$ Franz Muheim

Nuclear and Particle Physics

9

Cabibbo Mixing Angle

Quark Flavour Mixing

Two generations & four quark flavours (u, d, c, s) weak eigenstates not equal to mass eigenstates are linear combination of mass eigenstates

Cabibbo Hypothesis

W boson couples to $\begin{pmatrix} d' \\ s' \end{pmatrix} = \begin{pmatrix} \cos \theta_{\rm C} & \sin \theta_{\rm C} \\ -\sin \theta_{\rm C} & \cos \theta_{\rm C} \end{pmatrix} \begin{pmatrix} d \\ s \end{pmatrix}$ weak doublet (u,d') **Cabbibo angle** θ_c rotates weak eigenstates Coupling strength to W boson within doublet

$$\begin{pmatrix} v_e \\ e^- \end{pmatrix} \rightarrow g_W \quad \begin{pmatrix} u \\ d \end{pmatrix} \rightarrow g_W \cos \theta_C = g_W V_{ud} \quad \begin{pmatrix} u \\ s \end{pmatrix} \rightarrow g_W \sin \theta_C = g_W V_{us}$$

Experimental Results

- Muon decay Beta decay Pion decay Kaon decay Cabibbo angle
- $\Gamma(\mu^- \to e^- \overline{\nu}_e \nu_\mu) = G_F^2 m_\mu^5 / 192\pi^3 = \Gamma_\mu$ $\Gamma(d \rightarrow u \,\overline{\nu}_e \nu_\mu) \propto G_F^2 \cos^2 \theta_{\rm C} = G_F^2 |V_{\mu d}|^2$ $\Gamma(\pi^+ \to \mu^+ \nu_{\mu}) \propto G_F^2 \cos^2 \theta_C = G_F^2 |V_{\mu d}|^2$ $\Gamma(K^+ \to \mu^+ \nu_{\mu}) \propto G_F^2 \sin^2 \theta_C = G_F^2 |V_{\mu\nu}|^2$ $\theta_{\rm C} = 12.96(9)^0$ $\sin \theta_{\rm C} = 0.2243(16)$

Cabibbo-Kobayashi-Maskawa Mechanism

W couples quarks of different generations For 3 generations expand to

$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

Nuclear and Particle Physics

Weak Hadron Decays

Lightest Mesons and Baryons

only flavour changing weak decay possible for Pions (π^+ = u dbar), kaons (K⁺ = u sbar), charmed (D) and B mesons, neutron, Λ , Σ , Ξ , Ω Exceptions: zero net quantum numbers allow electromagnetic decay, e.g. $\pi^0 \rightarrow \gamma\gamma$

Spectator Model

Weak decay of heavy B or D meson (b or c quark)

Decay rate of B or D meson equal to decay rate of heavy b or c quark, light quark is only spectator <u>Predictions of Spectator Model</u>

Semileptonic decay rate $B \rightarrow X_{c,u} e^{-} vbar$ Equal total decay rates/lifetimes for D^{+}, D^{0}, D_{s}^{+} and B^{+}, B^{0}, B_{s}^{+} D meson lifetimes $\tau_{D^{+}} \approx 2.5 \tau_{D^{0}} \approx 2.5 \tau_{D_{s}^{+}}$ B mesons lifetimes are equal within 10% Spectator model works well for B mesons

Nuclear and Particle Physics