Introduction to the Standard Model

Lecture 2

Symmetries

global:		momentum, angular momentum, spin weak isospin, charge, colour
local:	spacetime symmetries internal symmetries	gravity as a gauge theory gauge theory

Basics of Group theory

(see tutorial for more details)

The Standard Model requires knowledge of the groups, U(1), SU(2), and SU(3), along with some of their matrix representations and associated Lie-algebras.

The U(1) group

Each group element of U(1) can be represented by a pure phase factor, $e^{i\alpha}$. The parameter, α , is real and continuous which indicates that U(1) has an infinite set of group elements and is continuous.

Since $e^{i\alpha} = \cos \alpha + i \sin \alpha$, U(1) is isomorphic to 2-by-2 rotation matrices, i.e. elements of SO(2), which also form a Lie-group:

The SU(N) group

i.) The SU(N) group is defined as the collection of all unitary $N \times N$ matrices U, i.e. $U^{-1} = U^{\dagger}$, with determinant equal to one.

$$U \in SU(N) \Rightarrow \underbrace{UU^{\dagger} = 1}_{N^2 \text{ relations}}, \underbrace{\det(U) = 1}_{1 \text{ relation}}$$

As $U \in \mathbb{C}^{N \times N}$ has N^2 complex entries or $2N^2$ real entries, we are left with $2N^2 - N^2 - 1 = N^2 - 1$ independent parameters.

ii.) Consider the N-vector valued field, $\vec{\psi}$, transforming under SU(N) as

$$\vec{\psi} \to \vec{\psi}' = U\vec{\psi} \quad \left(\psi'_j = U_{jl}\psi_l \text{ with } j, l = 1, \dots, N\right)$$

 $\vec{\psi}$ is in the fundamental representation. We also note that $\vec{\psi}^{\dagger}\vec{\psi}$ is invariant under an SU(N) transformation since

$$\vec{\psi}\vec{\psi} \rightarrow \vec{\psi'}^{\dagger}\vec{\psi'} = (U\vec{\psi})^{\dagger}U\vec{\psi}$$
$$= \vec{\psi}^{\dagger}U^{\dagger}U\vec{\psi}$$
$$= \vec{\psi}^{\dagger}\vec{\psi}$$

iii.) A group element U can be expressed as an exponential

$$U(\Lambda_1, \dots, \Lambda_{N^2 - 1}) = \exp\left(i\sum_{a=1}^{N^2 - 1} \Lambda_a T_a\right) = \lim_{n \to \infty} \left(\mathbb{1} + i\frac{\Lambda_a}{n} T_a\right)^n$$

where Λ_a are real-valued and continuous, and $T_{a=1,...,N^2-1}$ are called the *generators* of the group. The conditions imposed by i.) and ii.) above restricts the T's:

a.)

$$U^{\dagger}U = 1 \Rightarrow \left(e^{i\varepsilon_{a}T_{a}}\right)^{\dagger} \left(e^{i\varepsilon_{b}T_{b}}\right)$$
$$= \left(1 + i\varepsilon_{a}T_{a} + \mathcal{O}(|\varepsilon_{a}|^{2})\right)^{\dagger} \left(1 + i\varepsilon_{b}T_{b} + \mathcal{O}(|\varepsilon_{b}|^{2})\right)$$
$$= \left(1 - i\varepsilon_{a}T_{a}^{\dagger} + \cdots\right) \left(1 + i\varepsilon_{b}T_{b} + \cdots\right)$$
$$= 1 + i\varepsilon_{b} \left(T_{b} - T_{b}^{\dagger}\right) + \cdots$$

We see that the generators must be Hermitian: $T_b = T_b^{\dagger}$.

b.)

$$\det U = 1 \Rightarrow \det \left(e^{i\varepsilon_a T_a} \right)$$
$$= 1 + i\varepsilon_a \operatorname{tr} \left(T_a \right) + \cdots$$

This implies that the generators must be traceless: $tr(T_a) = 0$.

Lie Algebra

The generators of SU(N) obey an important property. Evaluate

$$U = U_2^{-1} U_1^{-1} U_2 U_1 \in SU(N)$$
(1)

by using

$$U = \mathbb{1} + i\lambda_c \mathcal{T}_c + \cdots$$

$$U_1 = \mathbb{1} + i\varepsilon_a \mathcal{T}_a - \frac{1}{2}(\varepsilon \cdot T)^2 + \cdots \Leftrightarrow U_1^{-1} = U_1^{\dagger} = \mathbb{1} - i(\varepsilon \cdot T) - \frac{1}{2}(\varepsilon \cdot T)^2 + \cdots$$

$$U_2 = \mathbb{1} + i\delta_b \mathcal{T}_b - \frac{1}{2}(\delta \cdot T)^2 + \cdots \Leftrightarrow U_2^{-1} = U_2^{\dagger} = \mathbb{1} - i(\delta \cdot T) - \frac{1}{2}(\delta \cdot T)^2 + \cdots$$

One gets

$$RHS \text{ of } (1) = \mathbb{1} - i(\delta \cdot T + \varepsilon \cdot T - \delta \cdot T - \varepsilon \cdot T) + \varepsilon_a \delta_b \Big(T_a T_b - T_b T_a \Big) + \cdots$$

compared to the LHS of (1)

$$1 + i\lambda_c T_c + \cdots = 1 + \varepsilon_a \delta_b [T_a, T_b] + \cdots$$

results into

$$\left[\mathbf{T}_{a},\mathbf{T}_{b}\right] = if_{abc}\mathbf{T}_{c} \qquad f_{abc} \in \mathbb{R}$$

The f_{abc} 's are anti-symmetric structure constants of the Lie group. The generators, T_a , with such a property, form the so-called *Lie-algebra* associated to the Lie-group.

$$U = \underbrace{\exp\left(i\Lambda_{a}T_{a}\right)}_{\text{whole group}} = \underbrace{\mathbb{1} + i\Lambda_{a}T_{a} + \cdots}_{\substack{\text{local elements define}\\\text{the properties}\\\text{of the whole group}}$$

Note The Lie group forms a compact manifold; the algebra is defined on the tangent to the unit element.

We choose a normalisation, $tr(T_aT_b) = T_R\delta_{ab}$ with $T_R = \frac{1}{2}$ (convention) such that

$$f_{abc} = -2i \mathrm{tr} \left(\left[\mathrm{T}_{a}, \mathrm{T}_{b} \right] \mathrm{T}_{c} \right)$$

Important Examples

SU(2)

The generators are proportional to the Pauli matrices: $T_a = \frac{1}{2}\sigma^a$.

The algebra is given as: $\left[\frac{\sigma^a}{2}, \frac{\sigma^b}{2}\right] = i\varepsilon^{abc}\frac{\sigma^c}{2}$ where the structure constants are the defined by the totally anti-symmetric epsilon tensor ε^{abc} . Remember that

$$\sigma^{1} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma^{2} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma^{3} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

SU(3)

The algebra is: $\left[\frac{\lambda^a}{2}, \frac{\lambda^b}{2}\right] = i f^{abc} \frac{\lambda^c}{2}$ where the λ^a 's are the Gell-Mann matrices,

$$\lambda^{1} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad \lambda^{2} = \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad \lambda^{3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad \lambda^{4} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$
$$\lambda^{5} = \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{pmatrix} \quad \lambda^{6} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \quad \lambda^{7} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix} \quad \lambda^{8} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}$$

The structure constants are:

 $\begin{array}{l} f^{123}=1\\ f^{147}=f^{246}=f^{345}=f^{316}=f^{257}=f^{637}=\frac{1}{2}\\ f^{458}=f^{678}=\frac{\sqrt{3}}{2}\\ f^{\text{other}}=0 \end{array}$

Note that we can see the SU(2) subgroup in SU(3):

$$\lambda^{1} = \begin{pmatrix} \sigma^{1} & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad \lambda^{2} = \begin{pmatrix} \sigma^{2} & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad \lambda^{3} = \begin{pmatrix} \sigma^{3} & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Exercise check all the above