Introduction to the Standard Model

Lecture 2

Symmetries

Conserved 2

current

As an example, consider

momentum

conservation

Classification

spacetime symmetries

global: internal symmetries

spacetime symmetries

local: . .
internal symmetries

Basics of Group theory

(see tutorial for more details)

Ll
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Global
symmetry
> [nvariance
(when acting upon
a Lagrangian/Hamiltonian system)
homogeneity

of spacetime

> translational

invariance

momentum, angular momentum, spin
weak isospin, charge, colour

gravity as a gauge theory
gauge theory

The Standard Model requires knowledge of the groups, U(1), SU(2), and SU(3), along with
some of their matrix representations and associated Lie-algebras.

The U(1) group

Each group element of U(1) can be represented by a pure phase factor, ¢’*. The parameter,
a, is real and continuous which indicates that U(1) has an infinite set of group elements and

1s continuous.

Since €' = cosa + isina, U(1) is isomorphic to 2-by-2 rotation matrices, i.e. elements of
SO(2), which also form a Lie-group:



i . cosa —sino
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exp(ia((l) ‘(1]))

To see this ==¢ FETAY
consider the unit circle N
in the complex plane:

U(l) SO(2)

The SU(N) group

i.) The SU(N) group is defined as the collection of all unitary N x N matrices U, i.e.
U~! = U', with determinant equal to one.

UcSUN) = UU =1, det (U) =1
w_/A,)_/

9 .
N2 relations 1 relation

As U € CN*N has N? complex entries or 2N? real entries, we are left with 2N? — N2 — 1 =
N? — 1 independent parameters.

ii.) Consider the N-vector valued field, 1, transforming under SU(N) as

b =UP (¢;=Ujl¢l withj,lzl,...,N)

J is in the fundamental representation. We also note that JTJ is invariant under an SU(N)
transformation since

iii.) A group element U can be expressed as an exponential

n—~o0

N2-1 n
A
Ay, ooy AN2q) = ' g AT, ) =1 1+i—T,
U( 1, s LAN2 1) €xXp (Z v ) Hn( +Z'ﬂ )

where A, are real-valued and continuous, and T,—; _n2_1 are called the generators of the
group. The conditions imposed by i.) and ii.) above restricts the T7s:



We see that the generators must be Hermitian: T}, = TZ.

b.)
detU =1 = det <eiS“T")
—1 +i5atr<Ta) T

This implies that the generators must be traceless: tr (Ta> = 0.

Lie Algebra

The generators of SU(N) obey an important property. Evaluate
U = Uy ' U UU, € SU(N) (1)
by using
U=1+i\Tot -

1 1
Ul:11+7;gaTa—§(g-T)2+~-~<:>U;1:U}:n—z’(e-T)—§(g-T)2+~-~

Ug:n+z’5bTb—%(5-T)2+---<:>U2—1:ngn—i(a-T)—%(a-T)M---
One gets
RHSof(l):]1—z’((S-T+e-T—(S-T—a-T)+5a5b<TaTb—TbTa>+~-~
compared to the LHS of (1)
1+ iATe+ =1 4,0 [Ta, Ty + -+

results into
[Taa Tb] = i fapc Te Jare €R

The fu.’'s are anti-symmetric structure constants of the Lie group. The generators, T,, with
such a property, form the so-called Lie-algebra associated to the Lie-group.

U =exp (iAaTa) =1 +iATo+---
—

~

local elements define
the properties

of the whole group

whole group



Note The Lie group forms a compact manifold; the algebra is defined on the tangent to
the unit element.

We choose a normalisation, tr (TaTb) = TROu with Tp = %(convention) such that
fabc = _Qitr( [Taa Tb] Tc)

Important Examples
SU(2)

The generators are proportional to the Pauli matrices: T, = %aa.
b c
o o o
The algebra is given as: [7, 3] = 2'6“1”5 where the structure constants are the defined
by the totally anti-symmetric epsilon tensor £%¢. Remember that

L (01 o [0 —i , (1 0
"‘(10"’_ i 0) 270 —1

SU(3)
: A” )\b . abc)\C ) :
The algebra is: [?, E} =if 5 where the \*’s are the Gell-Mann matrices,
010 0 — 0 1 00 0 01
M=1100 M=14di 00| X=|0-10 M=[000
0 00 0 00 0 00 1 00
00 — 000 00 O 10 0
N=100 N=1001 N=|00 —i XN=101 0
1t 0 0 010 0 ¢« 0 00 —2
The structure constants are:
f123 =1
FUT _ p246 _ f345 F3I6 _ §257 _ p637 _ 1
f458 f678
fother =0
Note that we can see the SU(2) subgroup in SU(3):
0 0 0
U I = 7 0 Y= 7 o
00 O 00 O 00 O

Exercise check all the above



