Introduction to the Standard Model

Lecture 2

Symmetries

As an example, consider

Classification

global: $\begin{aligned} \text { spacetime symmetries } & \rightarrow \text { momentum, angular momentum, spin } \\ \text { internal symmetries } & \rightarrow \text { weak isospin, charge, colour }\end{aligned}$
local: $\quad \begin{aligned} \text { spacetime symmetries } & \rightarrow \text { gravity as a gauge theory } \\ \text { internal symmetries } & \rightarrow \text { gauge theory }\end{aligned}$

Basics of Group theory

(see tutorial for more details)
The Standard Model requires knowledge of the groups, $U(1), S U(2)$, and $S U(3)$, along with some of their matrix representations and associated Lie-algebras.

The $U(1)$ group
Each group element of $U(1)$ can be represented by a pure phase factor, $e^{i \alpha}$. The parameter, α, is real and continuous which indicates that $U(1)$ has an infinite set of group elements and is continuous.
Since $e^{i \alpha}=\cos \alpha+i \sin \alpha, U(1)$ is isomorphic to 2 -by- 2 rotation matrices, i.e. elements of $S O(2)$, which also form a Lie-group:

$$
e^{i \alpha}=\cos \alpha+i \sin \alpha \quad \underset{\text { isomorphic }}{\sim} \underbrace{\left(\begin{array}{rr}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right)}_{\exp \left(i \alpha\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right)\right)} \in S O(2)
$$

To see this
consider the unit circle in the complex plane:

The $S U(N)$ group

i.) The $S U(N)$ group is defined as the collection of all unitary $N \times N$ matrices U, i.e. $U^{-1}=U^{\dagger}$, with determinant equal to one.

$$
U \in S U(N) \Rightarrow \underbrace{U U^{\dagger}=\mathbb{1}}_{N^{2} \text { relations }}, \underbrace{\operatorname{det}(U)=1}_{1 \text { relation }}
$$

As $U \in \mathbb{C}^{N \times N}$ has N^{2} complex entries or $2 N^{2}$ real entries, we are left with $2 N^{2}-N^{2}-1=$ $N^{2}-1$ independent parameters.
ii.) Consider the N-vector valued field, $\vec{\psi}$, transforming under $S U(N)$ as

$$
\vec{\psi} \rightarrow \vec{\psi}^{\prime}=U \vec{\psi} \quad\left(\psi_{j}^{\prime}=U_{j l} \psi_{l} \text { with } j, l=1, \ldots, N\right)
$$

$\vec{\psi}$ is in the fundamental representation. We also note that $\vec{\psi}^{\dagger} \vec{\psi}$ is invariant under an $S U(N)$ transformation since

$$
\begin{aligned}
\vec{\psi} \vec{\psi} \rightarrow{\overrightarrow{\psi^{\prime}}}^{\dagger} \vec{\psi}^{\prime} & =(U \vec{\psi})^{\dagger} U \vec{\psi} \\
& =\vec{\psi}^{\dagger} U^{\dagger} U \vec{\psi} \\
& =\vec{\psi}^{\dagger} \vec{\psi}
\end{aligned}
$$

iii.) A group element U can be expressed as an exponential

$$
U\left(\Lambda_{1}, \ldots, \Lambda_{N^{2}-1}\right)=\exp \left(i \sum_{a=1}^{N^{2}-1} \Lambda_{a} \mathrm{~T}_{a}\right)=\lim _{n \rightarrow \infty}\left(\mathbb{1}+i \frac{\Lambda_{a}}{n} \mathrm{~T}_{a}\right)^{n}
$$

where Λ_{a} are real-valued and continuous, and $\mathrm{T}_{a=1, \ldots, N^{2}-1}$ are called the generators of the group. The conditions imposed by i.) and ii.) above restricts the T's:
a.)

$$
\begin{aligned}
U^{\dagger} U=\mathbb{1} & \Rightarrow\left(e^{i \varepsilon_{a} \mathrm{~T}_{a}}\right)^{\dagger}\left(e^{i \varepsilon_{b} \mathrm{~T}_{b}}\right) \\
& =\left(\mathbb{1}+i \varepsilon_{a} \mathrm{~T}_{a}+\mathcal{O}\left(\left|\varepsilon_{a}\right|^{2}\right)\right)^{\dagger}\left(\mathbb{1}+i \varepsilon_{b} \mathrm{~T}_{b}+\mathcal{O}\left(\left|\varepsilon_{b}\right|^{2}\right)\right) \\
& =\left(\mathbb{1}-i \varepsilon_{a} \mathrm{~T}_{a}^{\dagger}+\cdots\right)\left(\mathbb{1}+i \varepsilon_{b} \mathrm{~T}_{b}+\cdots\right) \\
& =\mathbb{1}+i \varepsilon_{b}\left(\mathrm{~T}_{b}-\mathrm{T}_{b}^{\dagger}\right)+\cdots
\end{aligned}
$$

We see that the generators must be Hermitian: $\mathrm{T}_{b}=\mathrm{T}_{b}^{\dagger}$.
b.)

$$
\begin{aligned}
\operatorname{det} U=1 & \Rightarrow \operatorname{det}\left(e^{i \varepsilon_{a} \mathrm{~T}_{a}}\right) \\
& =1+i \varepsilon_{a} \operatorname{tr}\left(\mathrm{~T}_{a}\right)+\cdots
\end{aligned}
$$

This implies that the generators must be traceless: $\operatorname{tr}\left(\mathrm{T}_{a}\right)=0$.

Lie Algebra

The generators of $S U(N)$ obey an important property. Evaluate

$$
\begin{equation*}
U=U_{2}^{-1} U_{1}^{-1} U_{2} U_{1} \in S U(N) \tag{1}
\end{equation*}
$$

by using

$$
\begin{aligned}
U & =\mathbb{1}+i \lambda_{c} \mathrm{~T}_{c}+\cdots \\
U_{1} & =\mathbb{1}+i \varepsilon_{a} \mathrm{~T}_{a}-\frac{1}{2}(\varepsilon \cdot T)^{2}+\cdots \Leftrightarrow U_{1}^{-1}=U_{1}^{\dagger}=\mathbb{1}-i(\varepsilon \cdot T)-\frac{1}{2}(\varepsilon \cdot T)^{2}+\cdots \\
U_{2} & =\mathbb{1}+i \delta_{b} \mathrm{~T}_{b}-\frac{1}{2}(\delta \cdot T)^{2}+\cdots \Leftrightarrow U_{2}^{-1}=U_{2}^{\dagger}=\mathbb{1}-i(\delta \cdot T)-\frac{1}{2}(\delta \cdot T)^{2}+\cdots
\end{aligned}
$$

One gets

$$
R H S \text { of }(1)=\mathbb{1}-i(\delta \cdot T+\varepsilon \cdot T-\delta \cdot T-\varepsilon \cdot T)+\varepsilon_{a} \delta_{b}\left(\mathrm{~T}_{a} \mathrm{~T}_{b}-\mathrm{T}_{b} \mathrm{~T}_{a}\right)+\cdots
$$

compared to the LHS of (1)

$$
\mathbb{1}+i \lambda_{c} \mathrm{~T}_{c}+\cdots=\mathbb{1}+\varepsilon_{a} \delta_{b}\left[\mathrm{~T}_{a}, \mathrm{~T}_{b}\right]+\cdots
$$

results into

$$
\left[\mathrm{T}_{a}, \mathrm{~T}_{b}\right]=i f_{a b c} \mathrm{~T}_{c} \quad f_{a b c} \in \mathbb{R}
$$

The $f_{a b c}$'s are anti-symmetric structure constants of the Lie group. The generators, T_{a}, with such a property, form the so-called Lie-algebra associated to the Lie-group.

$$
U=\underbrace{\exp \left(i \Lambda_{a} \mathrm{~T}_{a}\right)}_{\begin{array}{c}
\text { whole group }
\end{array}}=\underbrace{\mathbb{1}+i \Lambda_{a} \mathrm{~T}_{a}+\cdots}_{\begin{array}{c}
\text { local elements define } \\
\text { the properties } \\
\text { of the whole group }
\end{array}}
$$

Note The Lie group forms a compact manifold; the algebra is defined on the tangent to the unit element.
We choose a normalisation, $\operatorname{tr}\left(\mathrm{T}_{a} \mathrm{~T}_{b}\right)=T_{R} \delta_{a b}$ with $T_{R}=\frac{1}{2}$ (convention) such that

$$
f_{a b c}=-2 i \operatorname{tr}\left(\left[\mathrm{~T}_{a}, \mathrm{~T}_{b}\right] \mathrm{T}_{c}\right)
$$

Important Examples

$S U(2)$
The generators are proportional to the Pauli matrices: $\mathrm{T}_{a}=\frac{1}{2} \sigma^{a}$.
The algebra is given as: $\left[\frac{\sigma^{a}}{2}, \frac{\sigma^{b}}{2}\right]=i \varepsilon^{a b c} \frac{\sigma^{c}}{2}$ where the structure constants are the defined by the totally anti-symmetric epsilon tensor $\varepsilon^{a b c}$. Remember that

$$
\sigma^{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma^{2}=\left(\begin{array}{rr}
0 & -i \\
i & 0
\end{array}\right), \quad \sigma^{3}=\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right)
$$

$S U(3)$
The algebra is: $\left[\frac{\lambda^{a}}{2}, \frac{\lambda^{b}}{2}\right]=i f^{a b c} \frac{\lambda^{c}}{2}$ where the λ^{a} 's are the Gell-Mann matrices,

$$
\begin{aligned}
& \lambda^{1}=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \quad \lambda^{2}=\left(\begin{array}{rrr}
0 & -i & 0 \\
i & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \quad \lambda^{3}=\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right) \quad \lambda^{4}=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right) \\
& \lambda^{5}=\left(\begin{array}{rrr}
0 & 0 & -i \\
0 & 0 & 0 \\
i & 0 & 0
\end{array}\right) \quad \lambda^{6}=\left(\begin{array}{rrr}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) \quad \lambda^{7}=\left(\begin{array}{rrr}
0 & 0 & 0 \\
0 & 0 & -i \\
0 & i & 0
\end{array}\right) \quad \lambda^{8}=\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -2
\end{array}\right)
\end{aligned}
$$

The structure constants are:

$$
\begin{aligned}
& f^{123}=1 \\
& f^{147}=f^{246}=f^{345}=f^{316}=f^{257}=f^{637}=\frac{1}{2} \\
& f^{458}=f^{678}=\frac{\sqrt{3}}{2} \\
& f^{\text {other }}=0
\end{aligned}
$$

Note that we can see the $S U(2)$ subgroup in $S U(3)$:

$$
\left.\lambda^{1}=\left(\begin{array}{ccc}
\sigma^{1} & 0 \\
0 & 0 & 0
\end{array}\right), \quad \lambda^{2}=\left(\begin{array}{cc}
\sigma^{2} & 0 \\
0 & 0
\end{array}\right) 0 . \quad \lambda^{3}=\left(\begin{array}{cc}
\sigma^{3} & 0 \\
0 & 0
\end{array}\right) 001\right)
$$

Exercise check all the above

