
The BAGEL assembler generation library

Peter A Boyle 1

Abstract

This paper presents two coupled software packages which receive widespread use in
the field of numerical simulations of Quantum Chromo-Dynamics. These consist of
the BAGEL library and the BAGEL Fermion sparse-matrix library, BFM.

The Bagel library can generate assembly code for a number of architectures and
is configurable – supporting several precision and memory pattern options to allow
architecture specifig optimisation. It provides high performance on the QCDOC,
BlueGene/L and BlueGene/P parallel computer architectures that are popular in
the the field of lattice QCD. The code includes a complete conjugate gradient im-
plementation for the Wilson and Domain Wall fermion actions, making it easy to
use for third party codes including the Jefferson Laboratory’s CHROMA, UKQCD’s
UKhadron, and the Riken-Brookhaven-Columbia collaboration’s CPS packages.

PACS: 11.15.Ha, 12.38.Gc

PROGRAM SUMMARY

Manuscript Title: The BAGEL QCD assembler generation library
Authors: Peter Boyle
Program Title: Bagel
Licensing provisions: GNU Public License V2.
Programming language: C++, assembler.
Computer: Massively parallel message passing. BlueGene/QCDOC/others
Operating system: POSIX, Linux and compatible
Number of processors used: 16,384
Keywords: Assembler, optimisation, domain specific compiler, PowerPC, BlueGene
Classification: 11.5 Quantum Chromodynamics, Lattice Gauge Theory
External routines/libraries: QMP, QDP++
Nature of problem: Quantum chromodynamics sparse matrix inversion for Wilson
and Domain Wall Fermion formulations
Solution method: Optimised Krylov linear solver
Typical running time 1h per matrix inversion; multi-year simulations

1 SUPA, School of Physics, University of Edinburgh, Edinburgh, EH9 3JZ, UK.

Preprint submitted to Elsevier 15 August 2009

Unusual features: Domain specific compiler generates optimised assembly code

2

1 Introduction

Quantum chromo-dynamics (QCD) is an SU(3) gauge theory believed to cor-
rectly describe the strong nuclear force. The low energy regime is highly non-
linear. The problem of solving the theory is amenable only to computer sim-
ulation.

Precise calculation of the matrix elements of low energy QCD hadronic bound
states is required for a number of important experimental determinations of
the CKM matrix elements that parametrise the standard model. Theoretical
uncertainty is dominant in a number of these quantities and the field of lattice
QCD is critical to measuring these constants of nature.

Lattice QCD simulations directly evaluate the Feynman path integral in Eu-
clidean space, using importance sampled Markov-Chain-Monte-Carlo tech-
niques to integrate over four (and in some cases five) space-time dimensional
quantum fields. The fermion fields have 4 × 3 spin-color structure, and the
gauge fields have 3×3 color structure. When expressed as a multi-dimensional
integral the number of independent degrees of freedom can exceed 107 in con-
temporary calculations.

Current simulations are performed on expensive massively parallel comput-
ers. Both our natural desire to advance our research, impatience at waiting
several years for the results of simulations, the requirements of scientific com-
petiveness, and the phenomenal cost of the fastest supercomputers are strong
motivating influences to ensure that we invest in software infrastructure to
maximise the performance our calculations.

Compiled code typically performs quite poorly. Runtimes are dominated by
sparse matrix inversion of the Dirac operator, typically using some variant
of red-black preconditioned Conjugate Gradient (CG). A good speed-up can
be obtained by careful optimisation of a bounded body of code covering the
sparse matrix (Dirac operator) application and the linear algebra used in the
innermost CG loop.

This paper describes a system, collectively called BAGEL, for generating effi-
cient QCD code for multiple platforms and for a several of the most popular
of representations of the Dirac sparse matrix operator.

It supports two different memory layouts – favouring linear memory streaming
or memory locality – either of which can be selected in order to tune to a given

3

memory system.

The structure of the paper is as follows: Section 2 contains background dis-
cussion of why compilers typically fail to produce optimal code. Section 3
describes the design goals of the BAGEL system. Section 4 describes the soft-
ware interface to the BAGEL system, and Section 5 describes compilation and
usage. Considerations for prudent scientific exploitation, such as software and
hardware test infrastructure, are described in section 6. Section 7 discusses
performance and precision considerations.

2 Problem characterisation

We are interested in applying Krylov space solvers, for example the Conjugate
Gradient algorithm to solve the manifestly Hermitian (complex valued) sparse
matrix equation for a matrix M,

ψ = (M †M)−1η

where indices are suppressed. Red-black checkerboard preconditioning is used.
In four dimensional systems, the checkerboard is defined by even and odd
parities p = (x+ y + z + t)|2, and M is block decomposed into

M =

Mee Meo

Moe Moo

 =

 1 0

MoeM
−1
ee 1

 1 0

0 Moo −MoeM
−1
ee Meo

 1 M−1

ee Meo

0 1

The preconditioned system solves the Hermitian system

ψo = (M †
precMprec)

−1η′o

on the odd checkerboard with the Schur complement

Mprec = Moo −MoeM
−1
ee Meo.

For the non-Hermitian system relevant to valence propagator calculations we
use CG-NE, where η′o = ηo −MoeM

−1
ee ηe, and ψe = M−1

ee ηe −M−1
ee Meoψo. For

Wilson fermions both Mee and its inverse are trivial and can be scaled to the
identity, making their application cost free.

4

2.1 Wilson fermions

For Wilson fermions the vectors ψ and η represent 4 × 3 × L3 × T complex
numbers: here L ' 32 and T ' 64 represent a discrete spatial and temporal
grid. The matrix M is complex valued with naive dimension (4×3×L3×T)2.
However it is sparse with a nearest neighbour coupling term representing the
gauge covariant Dirac operator, and a mass term proportional to the identity.
We use the DeGrand-Rossi basis for the Dirac matrices γµ in common with
CHROMA [1] and CPS [2].

DW (m) ≡Mx,x′ = m−
∑
µ

1

2

[
Uµ(x)(1−γµ)δx+µ̂,x′+U †

µ(x′)(1+γµ)δx−µ̂,x′−2δx,x′

]

The Wilson-Dirac hopping term involves 12 additions for two spinor projec-
tion for each of 8 forward and backward directions, 12×8 multiplies and 60×8
multiply-adds associated with SU(3) multiplication and 24× (8− 1) additions
to accumulate the result vector. The total is 1320 floating point operations
per site, composed of 96 multiplies, 480 multiply-accumulates, and 264 addi-
tions. The unpaired multiplies and adds in the Wilson kernel means that for
microprocessors whose peak floating point throughput is attained only when
issuing multiply-add instructions the “speed-of-light” performance that QCD
is guaranteed not to exceed is 78% of peak.

2.2 Domain wall fermions

Domain wall fermions are represented with a five dimensional system, with
fifth dimension length Ls and coordinate s [3–5]. It uses the Wilson operator
as a key building block. Here,

M = Ddwf
x,s;x′,s′(M5,mf) = δs,s′D

‖
x,x′(M5) + δx,x′D⊥

s,s′(mf)

D
‖
x,x′(M5) = DW (−M5)

D⊥
s,s′(mf) =

1

2

[
(1− γ5)δs+1,s′ + (1 + γ5)δs−1,s′ − 2δs,s′

]
− mf

2

[
(1− γ5)δs,Ls−1δ0,s′ + (1 + γ5)δs,0δLs−1,s′

]
. (1)

5

The additional dimension introduces an ambiguity in the choice of checker-
boarding and two different preconditioning schemes are used by the CPS and
CHROMA. The CPS approach defines a five dimensional checkerboarding,
rb5d, p = (x + y + z + t + s)|2. This has the attraction that Mee remains
free (as in the Wilson case) and parallelisation in the fifth dimension is very
effective.

Alternatively, one can continue to define a four dimensional checkerboarding
of this five dimensional system [6], p = (x + y + z + t)|2. This facilitates
uniform treatment of both four dimensional and five dimensional Fermion
formulations as an important practical consideration in the CHROMA code
base. In this rb4d scheme Mee contains a nearest neighbour coupling in the
fifth dimension, and its inverse is non-local in the fifth dimension. The cost
is of O(Ls) and is not prohibitive, however it introduces a serial dependency
between different coordinates in the fifth dimension that prevents effective
geometric parallelisation in this direction.

Both these approaches are supported by Bagel. We note that while the rb5d
scheme is simpler and requires fewer floating point operations, the rb4d scheme
empirically produces more precise results for a given CG stopping condition. In
particular in mixed precision schemes the required number of double precision
iterations tends to be reduced, as a result of the different the conditioning
effects of the different schemes.

3 Compiler deficiencies

If compilers produced efficient code the BAGEL system would not exist. Poor
performance is typically delivered by the compiled C++ typically in existence.
C++ code in popular QCD packages can yield as little as 1% of peak perfor-
mance on modern microprocessors, while even “hero programmed” C++ still
yields as little as 10% of peak. As shall be seen, carefully tuned assembler
achieves in the range 20-50% of peak on modern systems. Analysis of interme-
diate assembler generated by both the GCC compiler and vendor compilers
such as IBM’s xlc identifies some weaknesses [7]. Indeed, one is often amazed
that the ingenuity of microprocessor designers allows such poor code to per-
form as well as it does.

Register allocation : Compiled QCD code typically makes sub-optimal use
of the large available register set in modern RISC chips. QCD codes are dom-
inated by 3 × 3 complex matrix operations, and benefit greatly from using a
large register pool to eliminate repeated loads and stores. The GCC compiler
is particularly poor using the same two or three registers for otherwise inde-
pdent operations which introduces artificial serial dependencies. This is likely

6

a result of the historical importance of x86 in the development of GCC’s op-
timisations. The x86 architecture both has an exceedingly small register set,
and (consequently!) the hardware register renaming is particularly good at
avoiding this artificial serialisation. This is less often the case in RISC micro-
processors.

Software prefetching : Compilers are typically rather poor at detecting
memory access patterns in code, beyond simple AXPY type operations. Soft-
ware prefetching via explicit L1 cache touch instructions are rarely generated
for code containing non-trivial loop structures. On systems with hardware
stream prefetching there one often still gains from software prefetching if the
hardware fetch engine is external to the L1 cache.

4 BAGEL design

The first package described in this paper is the BAGEL assembler genera-
tion library. This is, in essence, a domain specific compiler for QCD. The
programming interface is a quirky C++ API, rather than a parsed computer
programming language. It is used to create and manipulate a list of objects
representing an abstracted RISC-like assembler code sequence. This sequence
is then translated to and optimised for a number of architectures, table 1.

Table 1
Bagel output targets

ppc440, powerIII PowerPC and Power standard floating point

bgl PowerPC with double Hummer extensions

noarch C-code output with complex scalar datatype

noarch-simd C-code output with complex vector datatype

usparcII SPARC (historically Sun) Fujitsu currently

alpha Alpha, mainly historical

The interface is designed to force the programmer to clearly specify important
information that compilers fail to extract from C++ code. This includes decid-
ing the register usage and loop unrolling strategies and declaring the memory
access/prefetch pattern. The interface is also designed to automate the tasks
that are done well and without fuss by computer algorithms - loop unrolling,
software pipelining and pipeline scheduling.

The approach provides facilities for load/store/operate on complex data types.
Some bounded number of complex and scalar point variables can be allocated,
in the form of scalars or one, two, and three dimensional arrays. The total
number is limited by the register set of the target architecture, and is typically

7

Table 2
Some examples of the programming interface provided by BAGEL

Scalar complex variable int x = alreg(Cregs);

Scalar float variable int x = alreg(Fregs);

Scalar integer variable int i = alreg(Iregs);

Array complex variable reg_array_1d(psi,Cregs,3);

Complex z = x + y complex_add(z,x,y)

Complex z = x− y complex_sub(z,x,y)

Complex z = x ∗ y complex_mul(z,x,y)

Complex load complex_load(z,offset,ptr)

Complex store complex_store(z,offset,ptr)

Stream declaration s = create_stream(block,ptr,STRIDED,stride);

Stream prefetch prefetch_stream(s);

Stream iterate iterate_stream(s);

Unrolled loop for(int i=0;i<3;i++) {}

Executed loop r = start_loop(count);

stop_loop(r);

either 32 or 64. Complex arithmetic operations use dedicated hardware where
available, e.g. BlueGene/L and BlueGene/P. These primitives are cracked into
multiple scalar floating point operations on other architectures.

Pointer/integer data types and integer arithmetic operations are provided.
Pointers are dereferenced in explicit load/store calls that allow modest offsets
to be specified (mapping to address offsets directly encoded in a processor in-
struction). While integer arithmetic can be used for pointer update, using the
stream facility enables both automatic pointer update and simultaneously ad-
vises the system to automatically generate software prefetch for the requested
pattern. Stream patterns include linear, strided, and the lookup table driven
gather/scatter idiom common in sparse matrix code.

Some examples are tabulated in table 2

The BAGEL package performs a greedy issue optimisation pass, where a plan
of usage for each of the processor pipelines is constructed. The instruction
stream is reordered such that each instruction is raised, consistent with allowed
dependency conflicts, to the earliest available pipeline issue slot not already
occupied by an earlier instruction.

Register RAW (read-after-write), WAW and WAR dependencies are tracked

8

and respected in the reordering. Dependencies through the memory system
are not tracked, and if present the programmer must required to insert ex-
plicit load/store barriers. This is not typically required in high performance
kernels, however, and the restriction is somewhat analogous to assuming that
the __restrict C++ keyword implicitly used.

The instructions are classed in related issue groups. Each target processor
provides a model detailing the number of pipelines, their produce-to-use la-
tency, and the issue groups served by each pipeline. The processor file also
specifies opcode translations from the abstracted assembler into the target
assembly language. Support is provided for several generations of each of the
Alpha, Sparc and PowerPC microprocessor lines. Support is included for spe-
cial variants of PowerPC such as the double Hummer (complex) instruction
set extensions in BlueGene/L and BlueGene/P systems. This automates the
tedious task of translating between broadly similar RISC instruction sets and
scheduling instructions for the details of a particular microprocessor imple-
mentation. Thus, after a single (and certainly non-trivial) coding effort one
supports many targets, each with the performance of hand tuned assembler.

5 Bagel Fermion Matrix package

We describe a second software package, BFM, which makes use of the above
BAGEL package and presents an increasingly widely used software interface
for QCD. This is made use of by both the UKQCD hadronic measurement
code, and the USQCD CHROMA [1] and CPS [2] software packages to obtain
high performance on US and UK national lattice gauge theory facilities includ-
ing QCDOC [8,9,7,10], BlueGene/L, and BlueGene/P systems. The package
has also been used by a number of groups throughout Europe, and has been
used throught RBC and UKQCD programme of Domain Wall Fermion simu-
lations [11–20]. In modern microprocessors, memory system considerations are
at least as important as floating point pipeline issues. BFM implements two
distinct approaches to the memory system, and the optimal one for each ar-
chitecture should be empirically determined. We consider the specific example
of the implementation of the 4-d Wilson-Dirac operator DW .

The stream memory strategy produces long patterns of sequential reads and
benefits from prefetch hardware. In the loop ordering detailed below, no more
than two concurrent read streams are required, and contiguous sequences run
the full length of the vector. The implementation uses an index ordering where
the left most index moves fastest in memory, and ~x represents a four dimen-
sional coordinate in x, y, z, t order. This order is optimal for QCDOC which
has no L2 cache, but rather a similar sized addressable on-chip embedded
DRAM memory. This memory system had a write bandwidth that exceeded

9

read bandwidth and would only prefetch two concurrent read streams.

∀~x,∀µ

χ(0, µ, ~x+ µ̂) = U(µ, ~x)†(1 + γµ)ψ(~x)

χ(1, µ, ~x− µ̂) = (1− γµ)ψ(~x)

∀~x

φ(~x) =
∑
µ
χ(0, µ, ~x) + U(µ, ~x)χ(1, µ, ~x)

The cache memory strategy produces high reuse at the L2 cache level but with
only short sequences of contiguous reads. Gauge fields are “double-stored”
with U(+, µ, ~x) ≡ U †(−, µ, ~x + µ̂). Here, depending on the L2 capacity, up
2 ∗ Nd = 8 fold reuse of a loaded site of ψ is available, however the typical
access length is only Nc×Ns = 24 words, or 192 bytes. Therefore, this does not
make particularly good use of any prefetch engine closer than the L2 cache.

∀~x

φ(x) =
∑

µ U(+, µ, ~x)†(1− γµ)ψ(~x+ µ̂) + U(−, µ, ~x)†(1 + γµ)ψ(~x− µ̂)

For domain wall fermions, we consider the four-dimensional component D‖.
There is an added attraction for this loop ordering. On the BlueGene archi-
tecture the register capacity is 32 complex words, which is ample to retain
both an entire 3× 3 SU(3) matrix and maintain temporary vectors on which
it operates. Since the same gauge link is applied on multiple 4-d space-time
planes with different coordinates in the fifth dimension, the following loop or-
dering allows better use of prefetching with a typical read run-length around
3KB. It also retains the benefit of substantial L2 cache reuse, and the imple-
mentation applies the same SU(3) matrix Ls times without reloading the data
to registers. This roughly halves the load store overhead.

∀~x{

∀µ,∀s{

χ(+, µ, s) = U(+, µ, ~x)†(1− γµ)ψ(s, ~x+ µ̂)

χ(−, µ, s) = U(−, µ, ~x)†(1 + γµ)ψ(s, ~x− µ̂)

}

φ(s, x) =
∑

s

∑
µ χ(+, µ, s) + χ(−, µ, s)

}

10

5.1 Software interface

The software interface to BFM is flexible and designed to enable users to access
it at a number of levels. Firstly, there is a code neutral interface that does not
have dependencies on third party QCD code bases. BFM supports a number
of different memory layout options according to architecture it is most natural
to present an interface that seperates internal from external representation of
data vectors, with import/export facilities provided. Vectors in the internal
format can be allocated, imported/exported and manipulated using opaque
references of type Fermion t.

template <class Float> class bfmbase {

Fermion_t allocFermion (int mem_type=mem_slow);

void freeFermion (Fermion_t handle);

void impexFermion (double *psi,

Fermion_t handle,

int import,

int cb,

int s) ;

void importFermion (double *psi,

Fermion_t handle,

int cb);

void exportFermion (double *psi,

Fermion_t handle,

int cb);

void importGauge(double *gauge, int dir) ;

}

BFM contains an implementation of the conjugate gradient algorithm. How-
ever, the interface presents appropriate sparse matrix and linear algebra build-
ing blocks that can easily be used to implement other Krylov solvers.

The internal precision used can be selected with a template argument, and
the interface consists of the following methods.

/*Linalg*/

double norm(Fermion_t psi);

11

void scale(Fermion_t psi,double a);

void axpy(Fermion_t z, Fermion_t x, Fermion_t y,double a);

void axpby(Fermion_t z,

Fermion_t x,

Fermion_t y,

double a,

double b);

double axpy_norm(Fermion_t z,

Fermion_t x,

Fermion_t y,

double a);

double axpby_norm(Fermion_t z,

Fermion_t x,

Fermion_t y,

double a,

double b);

void chiralproj_axpby(Fermion_t y,

Fermion_t x,

double a,

int sign,

int Ns);

/*Fermion matrix application*/

double Mprec(Fermion_t chi, // Preconditioned on checkerboard 0.

Fermion_t psi, // Returns norm of result if donorm!=0

Fermion_t tmp,

int dag,int donrm=0) ;

void Munprec(Fermion_t chi[2], // Unpreconditioned

Fermion_t psi[2],

Fermion_t tmp,

int dag) ;

/*Conjugate gradient implementation*/

int CGNE(Fermion_t sol_guess[2], Fermion_t source[2]);

int CGNE_prec(Fermion_t sol_guess, Fermion_t source);

An interface is provided to enable interaction with the codes making use of
the SciDAC QDP++ library, and its’ LatticeFermion and LatticeColorMa-
trix types. This includes both UKQCD’s measurement system and Jefferson

12

Laboratory’s CHROMA code base. The additional methods are

void importGauge(multi1d<LatticeColorMatrix> &u);

void importFermion (LatticeFermion &psi,

Fermion_t handle,

int cb,

int s=0);

void exportFermion (LatticeFermion &psi,

Fermion_t handle,

int cb,

int s=0);

// for DWF

void importFermion (multi1d<LatticeFermion> &psi,

Fermion_t handle,

int cb);

void exportFermion (multi1d<LatticeFermion> &psi,

Fermion_t handle,

int cb);

For convenience, a QDP++ wrapper is provided to call the BFM domain wall
wall solver, and handle the four dimensional to five dimensional fermion field
projection. The routine also computes the standard five dimensional observ-
ables required in DWF analyses with a low memory footprint implementation.

template <class Float_f,class Float_d>

int dwf_CG(LatticePropagator &sol,

LatticePropagator &src,

multi1d<LatticeColorMatrix> &U,

std::basic_string<char> output_stem,

int Ls,

Real mass,

Real M5,int Ncg,Real residual[],int max_iter[])

The implementation uses a Ncg complete restarts of the CG algorithm, with
the first Ncg-1 passes using precision of template type Float f and the final
pass using Float d. These can be either single or double precision. In the mixed
precision case, one gets most of the gain in bandwidth/performance of single
precision, while retaining the double precision accuracy of the final results.

13

6 Compilation

The package is available online at

http://www.ph.ed.ac.uk/~paboyle/bagel/bagel.html

It is often used in conjunction with QMP, QDP, and CHROMA or CPS

http://usqcd.jlab.org/usqcd-docs/qmp/

http://usqcd.jlab.org/usqcd-docs/qdp++/

http://usqcd.jlab.org/usqcd-docs/chroma/

http://qcdoc.phys.columbia.edu/chulwoo_index.html

The packages use the GNU autoconf tools as their build system. There are a
number of options, and we give the appropriate commands for a BlueGene/P
system as examples for the bagel package:

./configure --enable-isize=4 \

--enable-itype="unsigned long" \

--enable-ifmt=%lx \

--prefix=<install>

make all install

and the bfm package:

./configure --host=none \

--build=none \

--enable-strategy=stream \

--enable-allocator=memalign \

--enable-target-cpu=bgl \

--with-bagel=<install>\

--prefix=<install>\

CXX=mpicxx

make all install

7 Test infrastructure

The test infrastructure is in the bfm/tests subdirectory. These largely rely on
regression to the QDP++ and CHROMA libraries, and these are prerequisites
for most of the tests, however a single node regression test against reference
data files is provided for stand-alone compiles of BFM.

The most important of these are listed in table 3.

14

Table 3
BFM test infrastructure
bfm/tests subdirectory Functionality

linalg Linear combination, dot product etc...

wilson Wilson fermion checkerboarded matrix application

wilson singlenode Standalone (neutral) wilson fermion matrix

dwf mooee DWF rb4d checkerboarded building block

dwf mooeeinv DWF rb4d checkerboarded building block

dwf prec DWF rb4d checkerboarded matrix

dwf cg DWF rb4d checkerboarded CG for 5d system

dwf rb5d dperp DWF rb5d checkerboarded 5d hopping term

dwf rb5d DWF rb5d checkerboarded matrix

dwf rb5d cg DWF rb5d checkerboarded CG for 5d system

dwf rb5d prop 12 component 4d propagator solution

with 4d ↔ 5d projection.

majority vote Hardware test and diagnostic

In addition to software correctness tests, this code is used on massively parallel
computers and consumes a large amount of computer time - many thousands
of nodes for several years in the case of RBC-UKQCD simulations. Silent node
failures are a reality in any sufficiently large machine, and scientific prudence
requires hardware self test be carried out. Further, when reproducibility prob-
lems are discovered it is imperative that accurate identification of the failing
components be made.

The subdirectory bfm/tests/majority vote contains a hardware majority vote
test. This runs the same conjugate gradient algorithm on the same randomly
generated data vectors on every node concurrently, having all nodes use the
same RNG sequence. The conjugate gradient is run many times over in an
infinite loop with the random numbers refreshed after each inversion. The
virtual global sum method is overridden in this test to substitute a cross-
comparison of each node to the corresponding data on node zero. Any “broken”
nodes presenting a local norm contribution that differs from that on node zero
will conveniently identify itself for replacement.

It is possible to run this test with or without boundary face communication
between nodes. In the non-communicating mode, the nodes decouple their
calculations entirely and any local computational failures (e.g. memory system,
FPU etc...) will attributed to a unique node.

15

The test can also be run with boundary communication enabled. Silent hard-
ware errors that arise in communications themselves are highly non-trivial to
debug as attribution to a unique entity is not possible. Whether the problem is
send side or receive side cannot be determined in this scenario and intelligent
diagnostic tests are invaluable. This test does as well as possible: and a set
of nodes including faulty hardware is identified. Multiple runs can be used to
narrow down the intersection of all nodes to which the error propagates to
enable replacablement.

An earlier version of this test included software checksumming of send and
receive buffers in this latter scenario and can be made available on request.
This earlier form of this diagostic has been used extensively on by RBC and
UKQCD on QCDOC, and the present code has also been transferred to IBM
Research for use in BlueGene/P systems. In particular it has been used during
shakeout of the petaflop/s system at Argonne National Laboratory.

8 Performance and mixed precision

Performance figures quoted in this section are relative to the true peak perfor-
mance of the chip, and the reader should bear in mind that a figure of 78% of
peak would represent perfect pipeline usage for the (dominant) Wilson-Dirac
operator, and that the entire CG algorithm has a “speed-of-light” a little below
this due to the additional linear algebra.

Table 4 gives the performance of the full CG algorithm, including all com-
munication costs on a 44 volume on QCDOC, BG/L and BG/P systems. For
comparison we include the performance of the CHROMA C++ package. This
is done under the caveat that the CHROMA authors broadly expect and
support calling optimised sparse matrix code on major architectures, and a
number of optimised codes exist [21–24].

Single precision acceleration in Lattice QCD must be used with care. Is cer-
tainly safe to use during the molecular dynamics phase of an HMC evolution
if a precise double precision solution is used for the Metropolis accept/reject
step and the initial guess for the solution does not in itself violate Metropolis
reversibility. The worst that can then happen is a loss of acceptance which
will be evident in the simulation performance.

For valence propagator measurements double precision accuracy remains im-
perative, and the restarted CG approach described above recommended. Any
gain is determined by the combination of the ratio of single precision to dou-
ble precision performance, and the combination of the number of iterations
required for a single double precision solve and the number of iterations in

16

Table 4
Per-core performance of entire DWF conjugate gradient algorithm on a 44× 8 local
volume where the code is spread out in all four dimensions. Lattice QCD scales
well in toroidal machines when weak scaling is considered until global sums become
dominant, and this is representative of the performance per core of code on very
large systems with the same local volume. On BlueGene systems all cores are used
concurrently, to fairly represent memory system contention. The global volume is
chosen according to the number of processors to keep this local volume and thus
the surface/volume ratio fixed.

Platform precision nodes performance/node % peak

QCDOC double 64 270 Mflop/s 33%

QCDOC single 64 320 Mflop/s 40%

BG/L double 512 420 Mflop/s 15%

BG/L single 512 700 Mflop/s 25%

BG/P double 512 500 Mflop/s 15%

BG/P single 512 830 Mflop/s 24%

each of passes of a restarted mixed precision approach.

For illustration, the counts for rb5d on the lightest quark mass in RBC-
UKQCD’s 243, 2.13 GeV simulation is given in table 5 with a stopping condi-
tion of 1.0e−8.

Table 5
Comparison of conjugate gradient iteration counts for double precision and mixed
precision. A similar quality result can be obtained with around 90% of iterations
performed on single precision with only a 10% increase in the total number of itera-
tions. Given single precision code can perform up to twice as fast, this is a substantial
gain on certain architectures. Indeed were exotic hardware such as graphics related
considered, the gains could be even higher.

double 1000

single/single/double 800,200,100

9 Future developments

9.1 Additional Fermion actions

All the actions supported by Bagel are broadly speaking Wilson-like. The gen-
eralisation to cover Clover and Twisted-mass actions is relatively simple, and
the relevant assembler building blocks have been in existence for quite some

17

time. A revision of the package to include Clover and Twisted mass actions is
envisaged later this year once the author has had time to develop the C++
wrapping code, and more importantly the regression and test infrastructure.

The plethora of approaches to the Overlap operator suggest to the author that
the current implemention of a fast Wilson operator coupled to a more flexible
programming environments, such as CHROMA is the best approach.

9.2 Wider SIMD support

This new version of BFM and Bagel also contains an extension of the abstrac-
tion model to cover short-vector SIMD instructions. These are increasingly
important targets, with the x86/SSE, Altivec (VMX) and CELL platforms.
The latter two fit well with the RISC specific nature of Bagel, while x86 sup-
port is planned using the equivalent ”C” output (target noarch-simd) for
Bagel coupled to a future use of vector datatypes.

The complex datatype abstraction is generalised to a short vector of com-
plex, of architecture dependent length. Current architectures use length 1.
The strategy taken for greater lengths is worth some discussion as it quite
naturally generalises to longer lengths, such as the planned 16 for the forth-
coming Intel Larrabee graphics/HPC product once the author has access.

We note that QCD codes are constructed on a simple Cartesian lattice and
are most naturally thought of in a data parallel fashion. This is evidenced by
the success of the Connection Machines, APE projects, and the QDP++ data
parallel package. QCD codes are sadly shoehorned into the more commercially
successful SPMD programming model, and the global lattice is subdived geo-
metrically into domains of responsibility. Scalar variables and operations, (as
opposed to the truly parallel, site-indexed, vector computation) are replicated
in a redundant fashion on each of the processors.

With (short) vector SIMD, of length Nsimd, it is quite natural to think of
the global lattice being subdived geometrically into Nsimd more domains of
responsibility than there are processing cores. Each processing cores handles
Nsimd domains of responsibility in parallel, and the usual problem of suitability
of the operations and loops to longer vector lengths is solved.

The only cross-talk between different elements of SIMD vectors will arise quite
naturally in the infrequent communications phases, and are suppressed by the
surface to volume ratio. Reasonably powerful permute/extract/merge opera-
tions suffice to ensure that this is efficient.

BFM supports this mixed SIMD and MIMD geometric decomposition, and a

18

“C” output noarch-simd with Nsimd = 2 has been implemented, corresponding
to vectors of two complex numbers (re, im, re, im). This preparatory work does
not yet have manifest significance, it is expected to become highly significant
in the next few years as new and wider SIMD architectures become available.

10 Conclusions

This paper presents a quite sophisticated approach to the problem of gener-
ating high performance code for QCD, and in principle other fields. Domain
specific compiler technology has been developed that enables machine de-
tails to be obscured and multiple architectures covered by a single code base.
Pipeline scheduling is automated and development time is reduced compared
to hand coded assembler. More complex kernels than one might care to hand
code are enabled.

Significant effort has been made to ensure the optimised code can be easily
used by some of the most ubiquitous packages in the field.

The software is released under the terms of the GNU Public License v2. The
author politely requests that any scientific papers containing results that de-
pend on data produced with any version of BAGEL whether through gauge
configurations, propagators, or correlation functions should acknowledge that
use with reference to this paper.

References

[1] Edwards, R. G. and Joo, B., Nucl. Phys. Proc. Suppl. 140 (2005) 832.

[2] Boyle, P. A. et al., Nucl. Phys. Proc. Suppl. 140 (2005) 829.

[3] Blum, T. and Soni, A., Phys. Rev. D56 (1997) 174.

[4] Shamir, Y., Nucl. Phys. B406 (1993) 90.

[5] Kaplan, D. B., Phys. Lett. B288 (1992) 342.

[6] Brower, R. C., Neff, H., and Orginos, K., Nucl. Phys. Proc. Suppl. 153 (2006)
191.

[7] Boyle, P. A., Jung, C., and Wettig, T., ECONF C0303241 (2003) THIT003.

[8] Boyle, P. A. et al., Qcdoc: A 10 teraflops computer for tightly-coupled
calculations, in SC ’04: Proceedings of the 2004 ACM/IEEE conference
on Supercomputing, page 40, Washington, DC, USA, 2004, IEEE Computer
Society.

19

[9] Boyle, P. et al., IBM JRD 492 2/3 (2004) 351.

[10] Boyle, P. et al., Nucl. Phys. Proc. Suppl. 140 (2005) 169.

[11] Antonio, D. J. et al., Phys. Rev. D75 (2007) 114501.

[12] Allton, C. et al., Phys. Rev. D76 (2007) 014504.

[13] Antonio, D. J. et al., Phys. Rev. D77 (2008) 014509.

[14] Boyle, P., Proceedings of Science PoS(Lat2007) (2007) 005.

[15] Antonio, D. J. et al., Phys. Rev. Lett. 100 (2008) 032001.

[16] Boyle, P. A. et al., JHEP 07 (2008) 112.

[17] Allton, C. et al., Phys. Rev. D78 (2008) 114509.

[18] Aoki, Y. et al., Phys. Rev. D78 (2008) 054510.

[19] Boyle, P. A. et al., Phys. Rev. Lett. 100 (2008) 141601.

[20] Boyle, P. A., Flynn, J. M., Juttner, A., Sachrajda, C. T., and Zanotti, J. M.,
JHEP 05 (2007) 016.

[21] McClendon, C., (2001).

[22] Pochinsky, A., Nucl. Phys. Proc. Suppl. 140 (2005) 859.

[23] Pochinsky, A., J. Phys. Conf. Ser. 46 (2006) 157.

[24] Doi, J., PoS LAT2007 (2007) 032.

20

