
Electromagnetism - Lecture 13

Waves in Insulators

• Refractive Index & Wave Impedance

• Dispersion

• Absorption

• Models of Dispersion & Absorption

• The Ionosphere

• Example of Water
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Maxwell’s Equations in Insulators

Maxwell’s equations are modified by εr and µr

- Either put εr in front of ε0 and µr in front of µ0

- Or remember D = εrε0E and B = µrµ0H

Solutions are wave equations:

∇2E = εrε0µrµ0
∂2E

∂t2
=

εrµr

c2

∂2E

∂t2

The effect of εr and µr is to change the wave velocity:

v =
1√

εrε0µrµ0
=

c√
εrµr
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Refractive Index & Wave Impedance

For non-magnetic materials with µr = 1:

v =
c√
εr

=
c

n
n =

√
εr

The refractive index n is usually slightly larger than 1

Electromagnetic waves travel slower in dielectrics

The wave impedance is the ratio of the field amplitudes:

Z = E/H in units of Ω = V/A

In vacuo the impedance is a constant: Z0 = µ0c = 377Ω

In an insulator the impedance is:

Z = µrµ0v =
µrµ0c√

εrµr
=

√

µr

εr
Z0

For non-magnetic materials with µr = 1: Z = Z0/n
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Notes:

Diagrams:
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Energy Propagation in Insulators

The Poynting vector N = E×H measures the energy flux

Energy flux is energy flow per unit time through surface normal to

direction of propagation of wave:

∂U
∂t =

∫

A
N.dS Units of N are Wm−2

In vacuo the amplitude of the Poynting vector is:

N0 =
1

2
E2

0

√

ε0
µ0

=
1

2

E2
0

Z0

In an insulator this becomes:

N = N0

√

εr

µr
=

1

2

E2
0

Z

The energy flux is proportional to the square of the amplitude, and

inversely proportional to the wave impedance
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Dispersion

Dispersion occurs because the dielectric constant εr and refractive

index n are functions of frequency ω

Waves with different frequencies propagate with different velocities

For a particular frequency the phase velocity is:

vp(ω) =
ω

k
=

c

n(ω)

For a wavepacket containing a small range of frequencies ∆ω << ω

the group velocity is:

vg(ω) =
dω

dk
=

c

(n + ωdn/dω)

Energy transmission in a wavepacket is described by group velocity!

For most insulators dn/dω > 0, n > 1 and vg < c
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Absorption

Absorption can be represented by a complex dielectric constant:

εr = ε1 − iε2

The refractive index is also complex:

n =
√

(ε1 − iε2) = n1 − in2 n1 =
√

ε1 n2 =
ε2

2
√

ε1

where we assume that ε2 � ε1

Plane wave solutions have a complex wavenumber k = k1 − ik2:

E = E0e
i(ωt−kz) E = E0e

−k2zei(ωt−k1z)

The imaginary part of the wavenumber gives an exponential

attenuation coefficient in the amplitude
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Phase Velocity and Attenutation

The phase velocity of the wave is given by the real parts of the

dielectric constant or refractive index:

v =
ω

k1
=

c

n1
=

c√
ε1

The attenuation length of the wave is inversely proportional to the

imaginary part of the refractive index:

α =
1

k2
=

c

ωn2
=

2c
√

ε1
ωε2

where we assume the absorption is small ε2 � ε1

8



Harmonic Oscillator Model

Equation of motion of an electron in an external electric field:

me

(

d2x

dt2
+ γ

dx

dt
+ ω2

0x

)

= −eE

where γ is a damping term due to other forces on the electron

and ω0 is the natural resonant frequency of the electron

An oscillating electric field causes simple harmonic motion:

E = E0e
i(kz−ωt) x = x0e

iωt

x0 =
−eE0

me[(ω2
0 − ω2) + iωγ]

An oscillating electron can be described by an oscillating electric

dipole moment:

p = −ex = −ex0e
iωtx̂
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Model of Dispersion & Absorption

The oscillating electrons create a polarization P = Nep

The electric susceptibility χE is:

χE =
P

ε0E
=

Nee
2

meε0[(ω2
0 − ω2) + iωγ]

and the dielectric constant is:

εr(ω) = 1 +
Nee

2

meε0[(ω2
0 − ω2) + iωγ]

The real and imaginary parts are:

ε1 = 1+
Nee

2(ω2
0 − ω2)

meε0[(ω2
0 − ω2)2 + ω2γ2]

ε2 =
Nee

2ωγ

meε0[(ω2
0 − ω2)2 + ω2γ2]
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The Ionosphere

The ionosphere is a region of the upper atmosphere that contains a

plasma of free electrons

It can be described by the harmonic oscillator model if we assume

ω � ω0 and neglect damping γ = 0:

εr(ω) = 1 − ω2
P

ω2

where the plasma frequency ωP depends on the electron density:

ωP =

√

Nee2

meε0

There is a dispersion relation between k and ω:

k =

√

ω2 − ω2
P

c
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Reflection of Waves by the Ionosphere

For frequencies ω < ωP , εr < 0 and k is purely imaginary

Waves with ω < ωP do not propagate through the ionosphere

The plasma is effectively a conductor and totally reflects the waves

For frequencies ω > ωP , εr > 0 and k is real

Waves with ω > ωP propagate with no attenuation

The plasma is effectively an insulator with phase velocity vp > c

and group velocity vg < c:

vp = c

√

1

(1 − ω2
P /ω2)

vg =
c2

vp
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Absorption in Molecular Materials

In molecular materials there can be many different resonant

frequencies ω0 associated with rotational and vibrational states

At the resonances there is large absorption

The width of a resonance is controlled by the damping term γ

The Q-factor is:

Q =
ω0

2|∆ω1/2|
=

ω0

γ
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Example of Polar Dielectric (Water)

• Low frequencies ω � 1010Hz:

No resonances. Negligible absorption. Static limit ε1 → 81.

These conclusions are modified by the presence of conducting

ions in salt water.

• Microwaves ω ≈ 1011Hz:

Rotational states lead to large absorption bands.

Thermal motion disupts alignment of molcular dipole moments.

ε1 decreases as a function of ω.

• Infrared ω = 1013 − 1014Hz:

Vibrational states lead to large absorption bands.

These have narrower widths than rotational states.

ε1 and ε2 vary rapidly.
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Jackson (Figure 7.9, P.315) - refractive index n =
√

ε1 (left) and

absorption coefficient α (right) of water as function of ω

15



• Visible light ω = 4 − 8 × 1014Hz:

Transparent due to large hole in absorption coefficient.

• Ultraviolet ω = 1015 − 1016Hz

Absorption is large due to collective excitations of electrons

known as plasmons.

Can be modelled by a plasma frequency ωP .

• High frequencies ω � ωP :

ε1 ≈ 1 and absorption is negligible.
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