Electromagnetism - Lecture 6

Induction

- Faraday's Law of Induction
- Electromotive Force
- Differential Form of Faraday's Law
- Examples of Induction
- Time-Varying Fields

Faraday's Experiments

These involved moving a bar magnet or equivalently a current carrying coil (both have magnetic dipole fields)

Movement is towards (or away from) a conducting loop

A current is **induced** in the loop by the motion

The motion changes the magnetic flux through the loop

Direction of current in loop depends on direction of motion ${\bf v}$ and magnetic dipole moment ${\bf m}$

Current flow is caused by an *induced potential difference* around the loop. This is known as an *emf*.

Faraday's Law of Induction

Faraday's Law of Induction states that:

$$\mathcal{E} = \oint_L \mathbf{E.dl} = -\frac{d}{dt} \int_A \mathbf{B.dS}$$

The integral of the electric field round a closed loop is related to the time-variation of the magnetic flux through the loop

 \mathcal{E} is known as the **induced electromotive force (emf)** this is confusing because \mathcal{E} is a potential difference!

 \mathcal{E} can cause a current to flow in a conducting loop: $\mathcal{E} = IR$

This is first introduction to **electrodynamics** of time-varying fields

In **electrostatics** there are no time-variations

Notes:		
110005.		
Diagrams:		

Methods of producing an emf

 \mathcal{E} is produced by a time-varying magnetic flux $\frac{d\Phi_B}{dt} = \frac{d}{dt} \int_A \mathbf{B.dS}$ This can occur in many different ways:

- Moving a loop into or out of a magnetic field
- $\int dS$ Mechanical change to area A of a loop in a magnetic field
 - **B** Uniform motion of a loop inside a non-uniform magnetic field Note that in a uniform magnetic field $\mathcal{E} = 0$!
 - Rotation of loop about its axis in a uniform magnetic field AC generators and electric motors
- d/dt Time variation of the magnetic field through a static loop

Lenz's Law

"Whenever a change in magnetic flux produces an *induced current* the direction of current flow is such as to produce effects *opposing* the change in flux"

- Force opposes movement of conducting loop into magnetic field
- Motion of conducting loop in magnetic field decelerates
- Torque acts against rotation of conducting loop in magnetic field

Related to the minus sign in Faraday's Law

Differential Form of Faraday's Law

Differential form of Faraday's Law from Stokes's theorem:

$$\oint_{L} \mathbf{E.dl} = \int_{A} (\nabla \times \mathbf{E}) . \mathbf{dS} = -\frac{d}{dt} \int_{A} \mathbf{B.dS}$$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

At any point in space the curl of the induced electric field is proportional to the time derivative of the magnetic field

Using $\mathbf{B} = \nabla \times \mathbf{A}$ and removing the curls, this can be written in terms of the magnetic vector potential:

$$\mathbf{E} = -\frac{\partial \mathbf{A}}{\partial t}$$

At any point in space the induced electric field is proportional to the time derivative of the magnetic vector potential

Notes:		
110005.		
Diagrams:		

Induction Examples - Rolling Wire

A conducting wire of length l rolls along conducting rails with velocity v. The rails are connected at one end to form a circuit.

The **area** of the circuit varies with time:

$$\frac{dA}{dt} = -vl$$

A uniform magnetic field is applied perpendicular to the loop. This generates an emf:

$$\mathcal{E} = \oint_{L} \mathbf{E.dl} = -\frac{d}{dt} \int_{A} \mathbf{B.dS} = vBl$$

which causes a current $I=\mathcal{E}/R$ to flow round the circuit

The magnetic force on the current *opposes* the change and decelerates the wire:

$$F = IBl = \frac{vB^2l^2}{R} = -m\frac{dv}{dt}$$
 $v = v_0e^{-t/\tau}$ $\tau = \frac{mR}{B^2l^2}$

Flux Cutting Law

A moving charge experiences a force $\mathbf{F} = q\mathbf{v} \times \mathbf{B}$

Transform to the (primed) rest frame of the charge:

Force is attributed to an electric field $\mathbf{F}' = q\mathbf{E}'$

These forces must be equivalent: $\mathbf{E}' = \mathbf{v} \times \mathbf{B}$

The emf in the moving frame is:

$$\mathcal{E} = \int \mathbf{E}'.\mathbf{dl} = \int \mathbf{v} imes \mathbf{B}.\mathbf{dl}$$

Dimensionally this looks like a time-varying magnetic flux

Emf is proportional to the rate at which a moving object cuts through magnetic flux lines

Notes:		
D.		
Diagrams:		

Rotating Faraday Disk

An insulating disk rotates with frequency ω around its axis. There is a uniform magnetic field **B** along the axis.

There is an induced emf along a radial line that sweeps round cutting through the magnetic flux lines:

$$\mathcal{E} = \int_0^a \mathbf{v} \times \mathbf{B}.\mathbf{dr}$$
 $\mathbf{v} = \mathbf{r} \times \omega$

$$\mathcal{E} = \frac{a^2 \omega B}{2}$$

Direction of emf is radially inwards or outwards depending on the sense of rotation and the direction of **B**.

Induction Examples - AC Generator

A coil of area A rotates about its diameter in a uniform magnetic field with angular velocity ω

The **angle** between $\bf B$ and A varies with time:

$$\Phi_B = AB\cos\omega t$$

$$\mathcal{E} = -\frac{d\Phi_B}{dt} = -AB\omega\sin\omega t$$

This produces an alternating current (AC) with frequency ω

Note that the peak current is obtained when the loop is parallel to \mathbf{B} and the magnetic flux through the loop $\Phi_B = 0$

Induction Examples - Betatron

A betatron consists of two iron poles shaped to give a **non-uniform** magnetic field as a function of radius r from the centre of the poles.

An electron of momentum p moves in a circular orbit of radius R due to the magnetic force:

$$F = evB = \frac{mv^2}{R} \qquad R = \frac{p}{eB}$$

The orbits have the **cyclotron frequency**:

$$\omega = \frac{v}{R} = \frac{eB}{m}$$

Notes:		
D.		
Diagrams:		

If the magnetic field **B** is increased linearly with time an emf is induced by the **time-variation** of the **average** field $\langle B(r < R) \rangle$ inside the orbital radius R:

$$\mathcal{E} = \pi R^2 \frac{d < B >}{dt} = E_{\phi} 2\pi R$$

The electrons are accelerated by a tangential emf:

$$mR\frac{d\omega}{dt} = \frac{eR}{2}\frac{d < B>}{dt}$$
 $\frac{d\omega}{dt} = \frac{e}{2m}\frac{d < B>}{dt}$

Differentiating the cyclotron frequency:

$$\omega = \frac{eB(R)}{m} \qquad \frac{d\omega}{dt} = \frac{e}{m} \frac{dB(R)}{dt}$$

The electrons remain at the same radius R if:

$$\frac{dB(R)}{dt} = \frac{1}{2} \frac{d < B >}{dt} \qquad B(R) = \frac{1}{2} < B(r < R) >$$

The average field inside any radius is twice the field at that radius