
Electromagnetism - Lecture 8

Maxwell’s Equations

• Continuity Equation

• Displacement Current

• Modification to Ampère’s Law

• Maxwell’s Equations in Vacuo

• Solution of Maxwell’s Equations

• Introduction to Electromagnetic Waves
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Continuity Equation

Charge conservation is a fundamental law of physics

Moving a charge from r1 to r2:

- decreases charge density ρ(r1) and increases ρ(r2)

- requires a current I between r1 and r2

This conservation law is written as a continuity equation:

I =

∮

A

J.dS = − ∂

∂t

∫

V

ρdτ

Using the divergence theorem we obtain the differential form:

∇.J = −∂ρ

∂t

At any point in space the divergence of the current density is

proportional to the time-derivative of the charge density
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Displacement Current

Starting from the differential form of Ampère’s law:

∇×B = µ0J

We can take the divergence of both sides:

∇.∇×B = µ0∇.J = 0

since “div curl = 0”

∇.J = 0 is inconsistent with the continuity equation if there are

time-varying charge densities

⇒ Ampère’s law is only correct in the electrostatic limit

Solved by adding a displacement current to the RHS:

∇×B = µ0(J + JD) ∇.JD =
∂ρ

∂t
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Modified Version of Ampère’s law

We can use Gauss’s Law to replace ρ with ∇.E in the expression

for the displacement current:

∇.JD = ε0
∂(∇.E)

∂t

Removing the divergences:

JD = ε0
∂E

∂t

The displacement current is the time derivative of the electric field

Modified version of Ampère’s law with displacement current:

∇×B = µ0(J + ε0
∂E

∂t
)
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Maxwell’s Equations

The laws of electromagnetism are summarized in four differential

equations (M1-4) known as Maxwell’s equations:

Gauss’s Law for E: ∇.E = ρ/ε0 M1

Gauss’s Law for B: ∇.B = 0 M2

Faraday’s Law of Induction: ∇×E = −∂B/∂t M3

Modified Ampère’s Law: ∇×B = µ0(J + ε0∂E/∂t) M4

“Maxwell’s equations are used constantly and universally in the

solution of a variety of practical problems”

(Halliday & Resnick P.566)
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Solution of Maxwell’s Equations in Vacuo

In a vacuum no charges and currents: ρ = 0 and |J| = 0

Take the curl of Maxwell’s Equation M3

Then substitute for ∇× B using M4:

∇×∇× E = −∂(∇×B)

∂t

∇×∇×E = −ε0µ0
∂2E

∂t2

Alternatively take curl of Maxwell’s equation M4

Then substitute for ∇× E using M3:

∇×∇×B = µ0ε0
∂(∇× E)

∂t

∇×∇×B = −ε0µ0
∂2B

∂t2
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Notes:

Diagrams:
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Use the vector calculus identity “curlcurl = grad div - delsquared”:

∇×∇×E = ∇(∇.E) −∇2E

In the absence of free charges ρ = 0, M1 gives ∇.E = 0:

∇×∇×E = −∇2E = −ε0µ0
∂2E

∂t2

Solutions of Maxwell’s Equations in vacuo are wave equations:

∇2E = ε0µ0
∂2E

∂t2

∇2B = ε0µ0
∂2B

∂t2

Velocity of waves is:

c =
1√
µ0ε0

= 3 × 108m/s
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Description of Electromagnetic Waves

The solutions of Maxwell’s Equations in vacuo are

electromagnetic (EM) waves

• EM waves can travel through a vacuum

• In vacuo all EM waves travel at the speed of light c

• EM waves can have any frequency ν = 0 to ∞

• EM waves have oscillating E and B fields

• There are two different polarization states

• EM waves carry electromagnetic energy
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Mathematical Description of EM Waves

Start with an oscillating electric field in x̂ direction:

E = E0e
i(kz−ωt)x̂ c =

ω

k

This is known as a plane wave solution

The direction of propagation of the wave is ẑ

Use M4 to determine magnetic field:

∇×B =

[

∂Bz

∂y
− ∂By

∂z

]

x̂ = ε0µ0
∂Ex

∂t
x̂

B = B0e
i(kz−ωt)ŷ B0 =

E0

c

E and B are perpendicular to each other, and to the direction of

propagation of the wave

E and B have amplitude ratio c, and are in phase
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Polarization of EM Waves

For an EM wave propagating in the ẑ direction there are two

independent polarization states

These can be defined in various ways:

• Plane polarization:

States are (Ex, By) and (Ey, Bx), i.e. the directions of the

fields are independent of z and t

• Circular polarization:

The directions of E and B rotate about the z axis as a function

of t. Sense of rotation is anticlockwise for one state, and

clockwise for the other (known as left and right-handed).

An unpolarized wave is a random mix of the two states

A fully polarised wave contains only one state
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Notes:

Diagrams:
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Energy of EM Waves

The total energy stored in the oscillating fields is:

U = UE + UM =
1

2

∫

V

( |B|2
µ0

+ ε0|E|2
)

dτ

The time averaged energy density is:

d < U >

dτ
=

1

2
ε0E

2
0 =

1

2

B2
0

µ0

The electric and magnetic energy densities are equal

The time variation of the energy is:

∂U

∂t
=

∫

V

(

B

µ0

∂B

∂t
+ ε0E

∂E

∂t

)

dτ
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Notes:

Diagrams:
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Use M3 and M4 to replace time derivatives with space derivatives:

∂By

∂t
=

∂Ex

∂z
ε0

∂Ex

∂t
= − 1

µ0

∂By

∂z

∂U

∂t
=

1

µ0

∫

V

(

By

∂Ex

∂z
− Ex

∂By

∂z

)

dτ

This can be written more generally as:

∂U

∂t
= − 1

µ0

∫

V

∂

∂z
(E×B)dτ

The Poynting vector N = (E×B)/µ0 describes the flow of

electromagnetic energy along ẑ in units of W/m2
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Notes:

Diagrams:
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