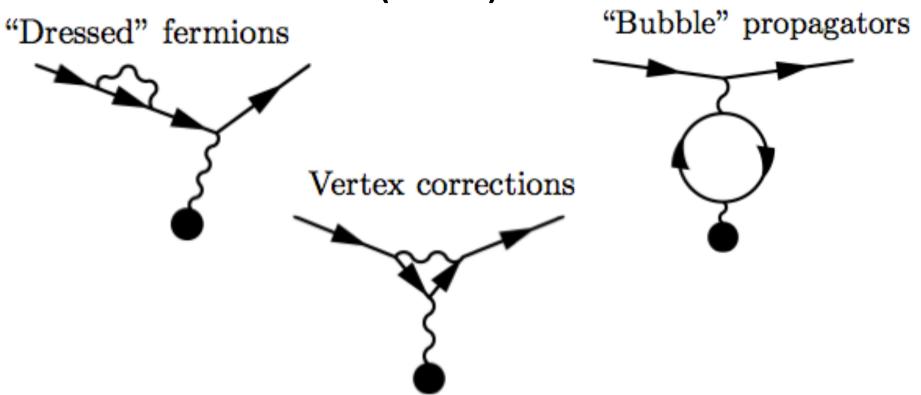
# Lecture 4 – Quantum Electrodynamics (QED)



An introduction to the quantum field theory of the electromagnetic interaction

### The Feynman Rules for QED

- > Incoming (outgoing) fermions have spinors  $u(\overline{u})$  (where  $\overline{u} = u^* \gamma^0$ )
- $\triangleright$  Incoming (outgoing) antifermions have spinors  $\overline{v}(v)$
- $\triangleright$  Incoming (outgoing) photons have polarization vectors  $\varepsilon^{\mu}$  ( $\varepsilon^{\mu*}$ )
- > Vertices have dimensionless coupling constants  $\sqrt{\alpha}$ At low four-momentum transfers (q²),  $\alpha$  = e²/ $\hbar$ c = 1/137
- ➤ Virtual photons have propagators 1/q²
- > Virtual fermions have propagators  $(\gamma^{\mu}q_{\mu} + m)/(q^2 m^2)$

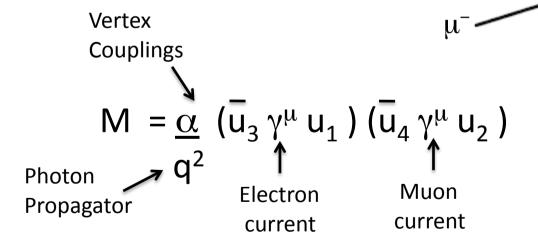
### **Summing Diagrams**

- The Matrix Element for a transition is the sum of all possible Feynman diagrams connecting the initial and final states
- A minus sign is needed to asymmetrise between diagrams that differ by the interchange of two identical fermions
- For QED the sum of higher order diagrams *converges*. There are more diagrams with higher numbers of vertices ... but for every two vertices you have a factor of  $\alpha$ =1/137
- $\succ$  The most precise QED calculations go up to O( $\alpha^5$ ) diagrams

# **Electron Muon Scattering**

There is only one lowest order diagram

Start from scattering of spinless particles (Lecture 2) and replace plane waves with electromagnetic currents and Dirac spinors



For unpolarized cross-section need to average over initial state spins and sum over final states spins

 $\sqrt{\alpha}$ 

 $\sqrt{\alpha}$ 

 $\mu^{-}$ 

## High Energy e-µ scattering

In the limit E>>m it can be shown that fermion helicity is conserved during the scattering process:

$$\overline{\mathbf{u}} \, \gamma^{\mu} \, \mathbf{u} = \overline{\mathbf{u}}_{\mathsf{L}} \, \gamma^{\mu} \, \mathbf{u}_{\mathsf{L}} + \overline{\mathbf{u}}_{\mathsf{R}} \, \gamma^{\mu} \, \mathbf{u}_{\mathsf{R}}$$

There are only four possible spin configurations:

$$\mathcal{M}(\uparrow\downarrow\uparrow\downarrow)$$
  $\mathcal{M}(\downarrow\uparrow\downarrow\uparrow)$   $\mathcal{M}(\uparrow\uparrow\uparrow\uparrow)$   $\mathcal{M}(\downarrow\downarrow\downarrow\downarrow\downarrow)$ 

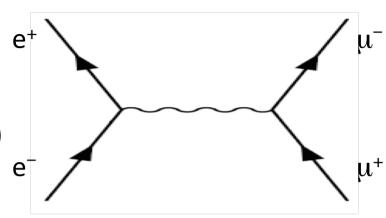
The unpolarized matrix element squared is:

$$|M|^2 = \underbrace{1}_{(2S_1+1)(2S_2+1)} \underline{\alpha}^2 \sum_{S_3,S_4} (u_3 \gamma^{\mu} u_1)^* (u_3 \gamma^{\mu} u_1) (u_4 \gamma^{\mu} u_2)^* (u_4 \gamma^{\mu} u_2)$$

$$|M|^2 = 2e^4 (\underline{s^2 + u^2}) = 2e^4 (\underline{1 + 4\cos^4 \theta/2})$$
  
 $t^2 = \sin^4 \theta/2$ 

### Cross-section for $e^+e^- \rightarrow \mu^+\mu^-$

Related to e-µ scattering by crossing symmetry t ↔ s (90° rotation of Feynman diagram)



$$|M|^2 = 2e^4 (\underline{t^2 + u^2}) = e^4 (1 + \cos^2 \theta)$$

Separated into allowed spin configurations:

$$\mathcal{M}(\uparrow\downarrow\uparrow\downarrow) = \mathcal{M}(\downarrow\uparrow\downarrow\uparrow) = e^2(1+\cos\theta)$$

$$\mathcal{M}(\uparrow\downarrow\downarrow\uparrow) = \mathcal{M}(\downarrow\uparrow\uparrow\downarrow) = e^2(1-\cos\theta)$$

Differential cross-section: 
$$\frac{d\sigma}{d\Omega} = \frac{e^4}{4s} (1 + \cos^2\theta)$$

Total cross-section: 
$$\sigma = \frac{4\pi\alpha^2}{3s}$$
 (decreases with increasing CM energy)

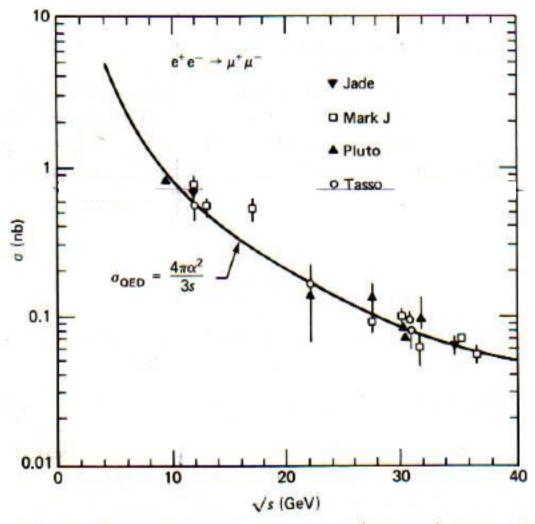


Fig. 6.6 The total cross section for  $e^-e^+ \rightarrow \mu^-\mu^+$  measured at PETRA versus the center-of-mass energy.

TABLE 6.1

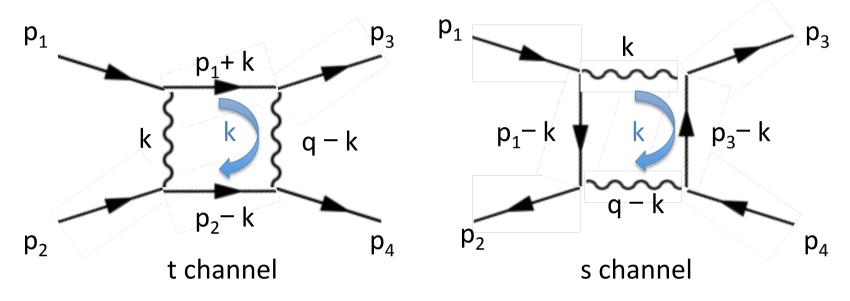
Leading Order Contributions to Representative QED Processes

|                                                                                  | Feynman Diagrams |                  | 91C 2/2e4                                                                                        |
|----------------------------------------------------------------------------------|------------------|------------------|--------------------------------------------------------------------------------------------------|
|                                                                                  | Forward<br>peak  | Backward<br>peak | Forward Interference Backward                                                                    |
| Møller scattering  e^e → e^e                                                     | X                | X                | $\frac{s^2 + u^2}{t^2} + \frac{2s^2}{tu} + \frac{s^2 + t^2}{u^2}$                                |
| (Crossing $s \leftrightarrow u$ )                                                |                  |                  | $(u \leftrightarrow t \text{ symmetric})$                                                        |
| Bhabha scattering  e <sup>-</sup> e <sup>+</sup> → e <sup>-</sup> e <sup>+</sup> | Forward          | "Time-like"      | Forward Interference Time-like $\frac{s^2 + u^2}{t^2} + \frac{2u^2}{ts} + \frac{u^2 + t^2}{s^2}$ |
| e <sup>-</sup> μ <sup>-</sup> → e <sup>-</sup> μ <sup>-</sup>                    | X                | lan Care (4)     | $\frac{s^2+u^2}{t^2}$                                                                            |
| (Crossing $\downarrow s \leftrightarrow t$ ) $e^-e^+ \rightarrow \mu^-\mu^+$     |                  | >~<              | $\frac{u^2+t^2}{s^2}$                                                                            |

### Higher Order QED Diagrams - I

Two photon exchange diagrams ("box" diagrams)

These add two vertices with a factor of  $\alpha$  = 1/137



The four momentum k flowing round the loop can be anything!

Need to integrate over  $\int f(k) d^4k$ 

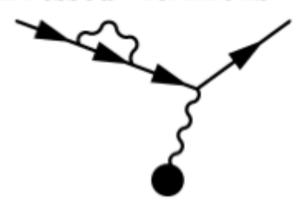
Unfortunately this integral gives ln(k) which diverges!

This is solved by "renormalisation" in which the infinities are

"miraculously swept up into redefinitions of mass and charge" (Aitchison & Hey P.51)

### Higher Order QED Diagrams - II

#### "Dressed" fermions



A real (or virtual) fermion can emit and reabsorb a virtual photon.

This modifies the fermion wavefunction.

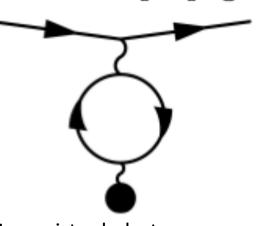
When the photon is emitted the fermion becomes virtual and changes its 4-momentum. A virtual photon can be emitted and reabsorbed across a vertex.

This effectively changes the coupling at the vertex.

#### Vertex corrections



### "Bubble" propagators



In a virtual photon propagator a fermion-antifermion pair can be produced and then annihilate.

This modifies the photon propagator.

Any charged fermion is allowed (quarks and leptons)!

Each of these diagram adds two vertices with a factor of  $\alpha = 1/137$ Again four momentum flowing round a loop can be anything!

### Gyromagnetic Ratio g

Measures the ratio of the magnetic moment to the spin

$$\rightarrow \mu = g \mu_B S$$
 for an electron

with the Bohr magneton  $\mu_B = e\hbar/m_e c = 5.8x10^{-11} \, MeV/T$ 

From the Dirac equation expect g=2 for a pointlike fermion

Higher order diagrams lead to an anomalous magnetic moment described by g-2

The QED contributions have been calculated to  $O(\alpha^5)$ 

The theoretical calculation is now limited by strong interactions (corrections from the bubble diagrams with quarks)

### Accuracy of g-2 Measurements

Anomalous magnetic moment of electron

Experiment: 
$$\left[\frac{g-2}{2}\right]_e = 0.0011596521869(41)$$

Theory: 
$$\left[\frac{g-2}{2}\right]_e = 0.00115965213(3)$$

Anomalous magnetic moment of muon

Experiment: 
$$\left[\frac{g-2}{2}\right]_{\mu} = 0.0011659160(6)$$

Theory: 
$$\left[\frac{g-2}{2}\right]_{\mu} = 0.0011659203(20)$$

Some argument about a 2-3 $\sigma$  discrepancy in the muon g-2 at the moment!

### Renormalisation

- Impose a "cutoff" mass M on the four momentum inside a loop
  - This can be interpreted as a limit on the shortest range of the interaction
  - It can also be interpreted as possible substructure in pointlike fermions
  - Physical amplitudes should not depend on choice of M
- Assume M<sup>2</sup> >> q<sup>2</sup> (but not infinity!)
- In(M<sup>2</sup>) terms appear in the amplitude
  - These terms are absorbed into fermion masses and vertex couplings
- The masses m(q<sup>2</sup>) and couplings  $\alpha$ (q<sup>2</sup>) are functions of q<sup>2</sup>
- Renormalisation of electric charge:

$$e_R = e \left(1 - \frac{e^2}{12\pi^2} \ln \left(\frac{M^2}{m^2}\right)\right)^{1/2}$$

N.B. This formula assumes only one type of fermion/antifermion loop

Can be interpreted as a "screening" correction due to the production of electron/positron pairs in a region round the primary vertex

### Running Coupling Constant

Converting from electric charge to fine structure constant and allowing for all fermion types:

$$\alpha(q^2) = \alpha(0) \left(1 + \alpha(0) \frac{z_f}{3\pi} \ln(-q^2/M^2)\right)$$

where  $z_f = \sum_f Q_f^2$  is a sum over the active fermion/antifermion charges (in units of e)

$$z_f$$
 is a function of  $q^2$ : = 1 (1MeV), = 8/3 (1 GeV), = 38/9 (100GeV)

A trick is to replace the  $M^2$  dependence with a reference value  $\mu$ :

$$\alpha(q^2) = \alpha(\mu^2) \left(1 - \alpha(\mu^2) \frac{z_f}{3\pi} \ln(-q^2/\mu^2)\right)^{-1}$$

Can choose any value of  $\mu$ .

For QED usual choice is  $\mu$ ~1 MeV,  $\alpha$ =1/137 (from atomic physics) An alternative is  $\mu$ =M<sub>7</sub>,  $\alpha$ (M<sub>7</sub>)=1/129