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Abstract 

Elastic and Inelastic Shock Compression of Diamond and Other Minerals 

by  

Ryan Stewart McWilliams  

Doctor of Philosophy in Earth and Planetary Science  

University of California, Berkeley  

Professor Raymond Jeanloz, Chair  

 
Laser-driven shock wave experiments have been used to examine the response of 

diamond and quartz to conditions of high dynamic stress, and finite-strain theory has 

been developed to treat the shock response of these and other high-strength minerals in 

the elastic shock-compression regime.  For diamond, two-wave shock structures featuring 

an elastic-precursor shock followed by an inelastic shock are observed.  The Hugoniot 

elastic limits of diamond are measured to be 80.1 (± 12.4),  80.7 (± 5.8) and 60.4 (± 3.3) 

GPa for <100>, <110> and <111> orientations, respectively.  The elastic yield strength of 

diamond inferred from these measurements is 75 (± 20) GPa and is strongly anisotropic.  

Inelastic-compression states beyond the Hugoniot elastic limit show a varying degree of 

strength retention, with the <111> orientation showing a retention of strength and the 

<110> orientation showing a loss of strength, based on comparisons with the ideal 

hydrostatic shock response of diamond.  Diamond is nontransparent to VISAR 

interferometry above its elastic limit, likely due to scattering of light in shocked diamond 

behind the inelastic wave.  The elastic-precursor shock is transparent; for elastic-uniaxial 

strain in the <100> and <110> directions the index of refraction along the compression 

axis increases.  The two-wave structure in diamond is expected to persist to at least 450 
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GPa and to even higher stresses for short-duration experiments; this is inconsistent with 

the commonly used Hugoniot of diamond reported by Pavlovskii (1971).  For α-quartz, a 

transition from optically transparent to reflecting is identified at a pressure of ~ 80 GPa 

on the Hugoniot.  The VISAR index of refraction correction for transparent quartz at high 

pressure is found to be 1.16 (± 0.04).  Eulerian and Lagrangian finite-strain formulations 

are developed to treat the case of elastic-shock compression at low stresses, for 

application to diamond, quartz and sapphire. 
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Introduction 

Carbon is the fourth most-abundant element in our solar system.  The suggestion 

that significant quantities of condensed carbon, in the form of diamond, may be present in 

the interiors of hydrocarbon-rich giant planets such as Uranus and Neptune has remained 

resilient since it was first proposed by Ross [1-3].  Planetary models, therefore, will need 

to account for the properties of diamond at the extreme pressures and temperatures of 

planetary interiors.  In extrasolar planetary systems, carbon may be even more abundant 

than in our own [4], and thus the equation-of-state of solid carbon may be even more 

relevant to describing the structure and evolution of extrasolar planetary bodies [5].  The 

diamond phase of carbon is also of unparalleled utility in numerous technological 

applications due to its high strength, transparency, chemical inertness, and high thermal 

conductivity.   In studies of extreme states of matter, diamond is frequently used in to 

generate static high pressure conditions using the diamond-anvil cell, and has been 

proposed as a capsule material for inertial-confinement fusion experiments, at, for 

example, the National Ignition Facility. 

 In Chapter 1, new experiments investigating the equation-of-state of carbon at 

high (~ 100 GPa) pressures are reviewed.  These experiments use the method of shock 

compression, by which supersonic compression waves are introduced to materials to 

generate well characterized states of high pressure and temperature.  Under shock 

compression, diamond has been studied extensively in the high pressure regime, beyond 

about 600 GPa, where diamond melts into metallic liquid carbon [6].  However, below 

600 GPa, where solid, insulating diamond is stable, there have been very few 
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experimental studies.  It was observed previously that the study of diamond by shock 

waves at these pressures is complicated by the uniquely high strength of diamond [7]. 

 One feature of shock compression of high-strength solids is the very high 

Hugoniot elastic limit (or HEL), which is the stress at which shock compression 

transitions from generating purely elastic strain in materials to inelastically or plastically 

deforming the material.  Both above and below the HEL, theories of nonlinear elasticity 

can be used to examine the shock response – that is, the change in density as a function of 

applied stress.  While finite-strain theory has been examined extensively to treat states of 

shock compression well beyond the HEL, it’s has been only partially examined to treat 

elastic shock compressions below the HEL.  The theory of finite strain for elastic shock 

compressions is developed in Chapter 2, and is then used to examine the elastic shock 

responses of several minerals, including diamond and quartz. 

Finally, in Chapter 3, new observations on the shock-compressional response of 

silica (SiO2) are presented, motivated by the use of quartz (α-SiO2) as a standard material 

in the study of diamond presented in Chapter 1.  Specifically, we examine the transition 

of silica from a transparent, solid insulator at low pressure to a strongly reflecting 

metallic fluid at high pressure. 
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Chapter 1: 

 

Shock Hugoniot, elastic limit, and strength of 

diamond under dynamic stress. 
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 Abstract: 

 

Laser-driven shock waves have been used to examine the elastic-inelastic 

response of single-crystal diamond shocked in the <100>, <110> and <111> 

crystallographic orientations.  Two-wave shock structures featuring an elastic precursor 

followed by an inelastic shock are observed.  Elastic precursors show evidence of stress 

relaxation behind the shock, decay of precursor amplitude with propagation distance, and 

a strong scaling with driving pressure, with precursors reaching maximum amplitudes of 

~ 200 GPa.  The Hugoniot elastic limits of diamond are measured to be 80.1 (± 12.4), 

80.7 (± 5.8) and 60.4 (± 3.3) GPa for <100>, <110>,and <111> orientations, respectively.  

The elastic yield strength of diamond inferred from these measurements is 75 (± 20) GPa 

and is strongly anisotropic.  Inelastic compression states beyond the Hugoniot elastic 

limit show a varying degree of strength retention, with the <111> orientation showing the 

largest retained strength, and the <110> orientation showing the least, based on 

comparisons with the ideal hydrostatic shock response of diamond.  Diamond is 

nontransparent to VISAR interferometry above its elastic limit, likely due to scattering of 

light in shocked diamond behind the inelastic wave.  The elastic precursor shock is 

transparent; for elastic uniaxial strain in the <100> and <110> directions, we find that the 

index of refraction of diamond along the compression axis increases.  The two-wave 

structure in diamond is expected to persist to at least 450 GPa, and to even higher stresses 

for short-duration experiments.  The present measurements are not consistent with those 

of Pavlovskii (1971), for which only a single-wave shock structure was reported for 

shock stresses from 100 to 600 GPa. 



 3

Introduction: 

 

Diamond has the largest resistance to plastic flow of any material currently known 

[8], and many have sought to predict or measure it’s yield strength [9-16].  Diamond is of 

unparalleled utility in numerous technological applications due to its high strength, 

transparency, chemical inertness and high thermal conductivity.  In studies of extreme 

states of matter, diamond is frequently used to generate static high-pressure conditions in 

the diamond-anvil cell, and has been proposed as a capsule material for inertial-

confinement fusion experiments.  In the present study, we conducted shock-wave 

experiments on diamond to examine its strength response to high dynamic stress. 

In solids, minimum elastic energy is obtained under hydrostatic (isotropic) stress  

conditions [17].  When stressed anisotropically, a solid material may behave as a fluid, 

with deformation relaxing the stress toward hydrostatic conditions, or the material can 

resist deformation, maintaining a state of anisotropic stress through strength effects.  The 

rate of relaxation depends strongly on timescale, on the mode of relaxation – whether 

through fracture, flow, or recrystallization – and on other factors such as temperature and 

whether the solid is a crystal or a glass.  For shock-compressed systems, experimental 

timescales are short, on the order of a nanosecond, and material often responds with a 

strength approaching theoretical limits.  Thus, shock waves are uniquely suited for 

studying the ideal strength response of materials. 

In shock loaded solids, strength can take a number of forms.  The most 

conspicuous of these is the Hugoniot elastic limit (HEL), the point at which shock 

compressed states transition from conditions of elastic, uniaxial strain to those in which 
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yielding occurs.  This is typically associated with the formation of a two-wave shock 

structure as driving stress rises above the HEL, with a fast elastic precursor followed by a 

slower inelastic-deformation shock. 

In the inelastic shock, strength is manifested differently depending on the material 

(Fig. 1.1) [18-21].  Brittle solid single-crystals often exhibit a loss of strength in inelastic 

deformation above the elastic limit.  The idealized model of total strength loss beyond the 

elastic limit is termed elastic-isotropic, in the sense that compression to the elastic limit is 

one of elastic uniaxial strain, while compression beyond the limit produces states of 

isotropic stress and strain.  Materials that deform in this manner tend – above the elastic 

limit – to show a stress vs. strain response similar to the hydrostatic isotherm known from 

independent measurements of elastic moduli.  In other shocked solids, particularly metals, 

the shear strength of a material is retained during yielding beyond the elastic limit.  The 

idealized model in this case would be one of elastic-plastic deformation – so named as 

the yielding mechanism is often one of microscopic slip and plastic flow.  Shock-

compressed states for such materials exhibit a constant offset from the hydrostatic 

response, when plotted as stress vs. density (Fig. 1.1).  The behavior of most materials 

under dynamic loading beyond the elastic limit can be said to fall between these limiting 

cases of total strength loss and total strength retention.  In detail, strength loss is rarely 

complete, and strength may also increase with applied stress or work hardening [21] or 

with time after passage of the inelastic wave [22]. 

The manifestation of strength on inelastic compression often differs considerably 

from that indicated by the HEL.  That is, materials of high strength and high elastic limits, 

such as brittle solids (e.g. quartz and silicon), show the greatest tendency toward loss of 
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strength, whereas materials with low elastic limits, such as metals, typically retain their 

strength beyond the elastic limit.  This effect is likely related to differences in the mode 

of failure.  In many brittle systems, the high initial strength promotes a catastrophic 

relaxation of shear stress once strength has been exceeded, similar to fracturing.  In one 

model, heat is localized in macroscopic shear zones due to the low thermal diffusivity 

typical of brittle solids, enhancing slip, possibly through melting [20-22].  In metals, the 

strength is lower and, when exceeded, the release of energy is smaller; also, the formation 

of thermal heterogeneities is inhibited by larger thermal conductivity.  In this case, 

deformation is thought to occur homogenously (plastically) by dislocation and slip on the 

microscopic scale, and strength is ultimately retained. 

Diamond is a brittle dielectric with uniquely high thermal conductivity, which 

would promote dissipation of thermal heterogeneities.  However, diamond also has an 

extremely high initial strength, and thus the potential for a large energy release on 

yielding.  Diamond therefore does not have any obvious analogue among either typical 

brittle solids or metals, and it is unclear what mode of deformation would be favored.  

Diamond’s resistance to plastic flow at ambient pressure and temperature is well known 

[8].  However, at high pressure [16] and high temperature [8], plastic flow is known to be 

possible in diamond, though on significantly longer timescales than explored by shock 

compression. 

The only prior comprehensive study of the shock-wave response of single-crystal 

diamond below 600 GPa was made by Pavlovskii [23].  He reported single-wave shocks  

propagating in the <100> orientation of diamond for shock stresses ranging from 100-600 

GPa.  However, subsequent observations by Kondo and Ahrens [7] on arbitrarily oriented 
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diamond, and Knudson et. al. [24] on <110> oriented diamond for final shock stresses 

between 180 and 250 GPa, showed the existence of a two-wave structure.  The precursor 

amplitudes in these studies ranged from 62 (± 5) GPa [7] to 95 (± 5) GPa [24].  These are 

the largest-amplitude elastic precursors ever observed, consistent with the high strength 

of diamond.  The observation of elastic precursors in later studies calls into question the 

earlier results of Pavlovskii. 

A suite of laser-driven shock experiments have previously probed the high-stress 

Hugoniot of diamond from 500 to 3500 GPa [6, 25-28], and the melting transition 

beginning at ~ 600 GPa [6, 26, 28],  yet the low-stress, solid-phase Hugoniot of diamond 

remains remarkably unexplored by dynamic experiments.  Here we report a 

comprehensive study of the two-wave structure in diamond shocked in three primary 

single-crystal orientations, <100>, <110> and <111>, to final stresses ranging from 100 

to 600 GPa. 
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Figure 1.1.  Elastic-plastic vs. elastic-isotropic shock loading models.  The elastic-
isotropic model shows a total collapse to hydrostatic compression above the HEL, with a 
small offset from the hydrostatic isotherm due to shock heating and thermal pressure.
The elastic-plastic model shows a persistent offset from the hydrostat (στ) due to finite 
shear strength which, for this simple model, has been assumed constant at high density. 
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Experimental techniques and observations: 

 

Shock waves were driven by 2 beams (100 GW) of the Janus laser at Lawrence 

Livermore National Laboratory, and 6 beams (3 TW) of the Omega laser at the 

Laboratory for Laser Energetics, University of Rochester.  Pulse durations were varied 

from 6 ns to 1 ns to produce different types of loading conditions.  The 6 ns pulses 

produced an optimum degree of shock steadiness during the experimental timescale, 

while 1-4 ns pulses produced decaying shock-wave conditions. 

 A suite of time-resolved diagnostics were used to constrain the conditions of the 

shock state.  Two line-imaging Velocity Interferometer for Any Reflector (VISAR) 

systems [29, 30] were used to obtain interferometric and travel-time velocity 

measurements, and a line-imaging Streak Optical Pyrometer (SOP) [31, 32] was used to 

measure thermal emission.  In the Janus facility, all streak cameras used were 

Hamamatsu C7700-01 models.  At the Omega facility, streak cameras were of custom 

design.  To obtain accurate timing measurements in the streak cameras, streak images of 

10-25 ns fullscale were used, and variations in sweep rate with time were accounted for.  

The time resolution of these diagnostics was ~ 100 ps.   At ambient conditions, diamond 

is transparent at the visible wavelengths used by these diagnostics. 

The diamond samples studied were cut for shock propagation in three primary 

crystallographic orientations, <100>, <110> and <111>.  The <100> and <110> samples 

were completely transparent and inclusion-free Ia and IIa diamonds fashioned into 

circular discs 100-500 μm in thickness and 1 mm in diameter, with the two broad 

surfaces polished; these were supplied by Delaware Diamond Knives, Inc. and Harris 
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Diamond Co.  The <111> samples were inclusion-free Ib diamonds, yellow in color, cut 

into 1 mm-sided squares, and ~ 200 μm thick with the broad surfaces formed by cleavage 

along (111) planes; these were supplied by Almax Industries.  Additionally, a CVD 

polycrystalline diamond sample was used in several very high-stress experiments.  These 

were of solid density, completely transparent, with a thickness of ~ 400 μm. 

Crystallographic orientations are assumed to be of the orientation requested from 

the supplier, but it is of interest to estimate the deviation from the desired orientation.  In 

the case of <111> diamonds, distinct cleavage planes on each broad face allow direct 

measurement of the angle between crystallographic orientation and the bulk surface 

normal, which defines the shock propagation direction; this angle was 1/4 degree or less 

for all <111> samples.  In the case of <110> and <100> oriented samples, this angle can 

be estimated from the parallelism of opposing surfaces, by assuming one surface is of 

correct orientation and the other of incorrect orientation.  For the maximum thickness 

variation over a 1 mm diameter observed in these diamonds (5 μm), a ~ 1/3 degree 

misalignment would be suggested; thus it is likely that the shock propagation direction 

should lie within a few degrees of the <100> and <110> orientations.  For polycrystalline 

samples, x-ray diffraction analysis showed that the surface normal corresponded to a 

weak texture in the <111> orientation; that is, the (111) planes of individual crystallites 

were on average aligned with the direction of shock propagation. 

The general target design is shown in Fig. 1.2.  Diamonds were mounted on a 

diamond-turned aluminum base disk, 3 mm in diameter and 50 μm thick, with 8-15 μm 

of plastic ablator (CH) deposited on the opposite surface.  In most targets, an anti-

reflection (AR) coated quartz window was placed adjacent to the diamond as a reference 
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standard.  In some targets, two ~100 μm thick diamonds of identical orientation were 

stacked, with a 100 nm layer of aluminum deposited on part of the interface between 

them, to provide an internal surface at which to study shock arrivals. 

Each diamond was examined, both before and after mounting, with a Wyco 

optical surface profilometer (Veeco Instruments) to measure the thickness of diamond at 

different positions over the 1 mm wide sample.  In some <111>-oriented samples, 

cleavage on different (111) planes often resulted in a series of steps on the surfaces.  

Samples with steps were either engineered such that the steps did not interfere with the 

measurements, or were not used.  Thickness measurements reported in Table 1.1 

correspond to the particular area of each diamond studied in the experiment; for stack 

targets, the thickness corresponds to the total thickness of the stack. 

Target components were aligned, stacked with a low-viscosity Norland-63 UV-

cure photopolymer glue between parts, and compressed using a Fineplacer Pico (Finetech 

GmbH).  Compression reduces gaps between parts to a minimum defined only by surface 

irregularities and trapped dust.  Targets with gap thicknesses larger than ~1 μm were 

discarded, since at larger gap thicknesses, the reverberation of the shock in the gap causes 

a perturbation in travel-time measurements on the order of the uncertainty.  For this 

reason all parts were closely inspected for dirt, scratches and other defects during 

assembly, and gaps were characterized rigorously.  Due to the high reflectivity of 

aluminum and diamond surfaces, interference fringes are observed in gaps when 

illuminated by white light.  These interference fringes, in combination with surface 

profilometry, are used to characterize gap thicknesses over the entire target.  The 100 nm 
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aluminum layer in the interface of stacked diamonds was too thin to significantly affect 

wave propagation in the present experiments. 

Drive laser focii were smoothed using phase zone plate technology to generate 

uniform irradiation over a square region 1000 μm on a side, or a circular region 650 μm 

in diameter.  In this way a planar shock of the same dimension as the focal spot was 

generated in the target.  By the time the shock propagated across the target, lateral 

rarefaction reduced the diameter of the planar region to between 950 and 200 μm, 

depending on target thickness, the phase plate used, and, for the square plate, the plate 

rotation relative to the target.  The extent of the planar region is constrained by the spatial 

uniformity of arrival times at a given depth in the target, as observed in VISAR records 

[30]. 

Representative VISAR records from the experiments are shown in Fig. 1.3.  The 

interferometric measurement of velocity by VISAR is given by [29, 30] 

Velocity ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

×+=
χδτ

λφ
)1(2

)( b  (Eq. 1.1) 

The second term in parenthesis is referred to as the VPF, or velocity-per-fringe, in which 

λ is the wavelength of the VISAR probe laser (532 nm), τ is the optical delay time 

introduced by the etalon in one leg of the interferometer, (1+δ) is a correction for optical 

dispersion in the etalon, and χ accounts for index of refraction effects in the shocked 

target.  The first term in parentheses is the number of fringes shifted, where φ is the fringe 

phase shift measured relative to the initial fringes, which are due to reflection from 

initially static (unmoving) surfaces, and b is the unknown integer number of base fringe 
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shifts.  The optical delay τ used in each VISAR channel was different, allowing the 

number of base fringe shifts b for each VISAR to be unambiguously resolved [30]. 

Fig. 1.3.a shows results from an experiment on a single diamond.  On shock 

arrival at the aluminum-diamond interface, the intensity of the fringes drops suddenly.  

This is due to the loss of reflected light from the aluminum base, resulting from the 

nontransparency of the shocked diamond.  At this point, only reflection from the static 

free surface is visible, and thus φ = 0.  The free surface of diamond is strongly reflective 

because of diamond’s high index of refraction, ~ 2.4.  About 5 ns later, two shocks arrive 

at the free surface, identified by two consecutive shifts in the fringes.  The magnitude of 

these shifts gives the free surface velocity, uf, through Eq. 1.1, where χ = 1 since the 

surface is in vacuum. 

In Fig. 1.3.b, an experiment on a stacked diamond target is shown.  Shock arrival 

events at the base and at the free surface are similar to those in Fig. 1.3.a.  Shock arrival 

is also recorded at the aluminized portion of the internal interface, shown at the bottom of 

the VISAR record in Fig. 1.3.b.  The first shock wave, upon arrival at this interface, is 

transparent to VISAR, and a fringe shift is measured.  The actual velocity implied by this 

fringe shift is unknown, as the value for χ in this case depends on the index of refraction 

of shocked diamond which has not been previously measured.  The arrival of the second 

shock at the internal interface corresponds to a sharp reduction in fringe intensity, due to 

the nontransparency of shocked diamond behind the second wave and loss of reflection 

from the aluminum layer.  The fringe shift returns to φ = 0 due to remaining reflection 

from the static free surface. 
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The loss of transparency of shocked diamond behind the second wave is likely 

due to scattering of the VISAR laser probe beam as it passes through deformed solid 

diamond.  This is consistent with the identification of the first, transparent wave as an 

elastic precursor, and the second as an inelastic deformation wave.  A similar situation 

arises with sapphire which, when shocked beyond its HEL, exhibits reduced transparency 

to optical probes such as VISAR due at least in part to scattering effects [33-35].  It is 

unlikely that diamond becomes nontransparent due to intrinsic (electronic) absorption, as 

the band gap of carbon is expected to remain large throughout the stress range that 

shocked diamond remains solid [36, 37].  The loss of transparency was not due to glue 

between target components becoming opaque at high pressure and temperature, because 

reflected light would still have been observed from diamond-glue interfaces in this case.  

Using broadband reflectometry [32], we found in a single experiment on <110> diamond 

that the loss of transparency was strong from 532 to 750 nm (Fig 1.6). 

While Fig. 1.3.a and 1.3.b utilized steady-pressure drives made by 6 ns laser 

pulses, the record in Fig. 1.3.c used a very intense short pulse (1 ns) that produced a 

decaying wave.  Immediately after breakout into diamond, the shock is strongly reflecting 

and the shock state is molten [6, 28].  With increasing time, shock velocity and stress at 

the shock front decrease, as does the reflectivity, until shock reflection ceases entirely 

(and the state immediately behind the shock front is solid).  Only very weak fringes are 

visible after this point due to an AR coating on the free surface of the diamond.  A two-

wave structure is then observed at the free surface, as the free-surface reflectivity 

increases on shock arrival.  This feature was reported previously, though with a different 

interpretation [30]. 
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 In general, a loss of free-surface reflectivity is observed during the arrival of the 

second wave.  In cases where the free surface remained clean during target assembly (Fig. 

1.3.a), the reflectivity is unchanged on first-wave arrival, and is followed by a reduction 

on second-wave arrival.  When the surface was coated in a thin layer of material, either 

an AR coating (Fig 1.3.c) or a film deposited by outgassing from epoxy (Fig. 1.3.b), the 

reflectivity increased on first wave arrival, but was also followed by a strong drop in 

reflectivity on second wave arrival.  While these thin surface layers, ~100 μm thick, 

affected the optical properties of the target, they did not significantly affect the 

compression and release response at the free surface.  The observed drop in reflectivity 

on second-wave arrival may be related to crystal breakup, and a consequent roughening 

of the free surface. 

Fig. 1.4 shows free-surface velocities of diamond following arrival of the first and 

second shocks, determined from the average of the two VISAR channels.   The wave 

profiles of diamond on first-wave free-surface arrival feature a sharp shock with a 

discontinuous jump in uf, followed by decreasing uf with time prior to second-wave 

arrival.  This is a common characteristic of elastic-precursor waves that is attributed to 

shear-stress relaxation behind the elastic shock through inelastic deformation [21, 22, 38].  

On second-wave arrival, the wave profile varies in form depending on driving stress and 

orientation.  For <100> and <110> oriented shocks at intermediate stresses, the wave 

profile features a sharp leading shock, and a subsequent slow rise to a limiting free-

surface velocity.  This form is probably due to the interaction of the two-wave structure 

with the free surface, which will be considered in more detail later.  At low driving 

stresses for <100> and <110> shocks, and to intermediate stresses for <111>-oriented 
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shocks, the second-wave arrival consists of a slow rise in free-surface velocity, without 

any sharp discontinuity; at high stresses, all orientations display a sharp rise with no 

apparent structure. 

The primary functions of the adjacent quartz window were to act as a reference 

for the shock conditions in the aluminum base and to provide time-resolved data on shock 

steadiness.  For the majority of experiments conducted here, quartz is shocked into the 

molten regime and the shock front is reflecting and emissive [39, 40], permitting direct 

observations of the conditions at the shock front with VISAR and optical pyrometry. 

In Fig. 1.3.a, the quartz shock front is reflecting, and shows slight variations in 

shock velocity (and reflectivity) with time, as indicated by changes in fringe position (and 

intensity) over the course of the record.  Shock velocity is measured interferometrically in 

the VISAR with χ = 1.56, which is the index of refraction of quartz at ambient conditions.  

The variations in shock velocity with time are due to the inherent unsteadiness of the 

laser drive, and are used to characterize the degree of shock steadiness and the 

uncertainty it induces in these experiments (Appendix A).  The thermal emission 

variations are consistent with the variations in velocity and reflectivity.  In Fig. 1.3.b, an 

inappropriate epoxy used to construct the target damaged the anti-reflection coating by 

outgassing, preventing direct observation of the weakly-reflecting quartz shock front with 

VISAR.  In this case, the transit time of the 137 μm thick quartz window is visible, 

providing a measurement of the average shock velocity in the window.  In such 

experiments with failed AR coatings, the variation in shock conditions with time was still 

observed in SOP records, as thermal emission penetrated the surface layer (Fig. 1.5). 
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For a single experiment at the lowest stress studied here, quartz was transparent 

behind the shock wave.  In this case, the velocity of the quartz-aluminum interface was 

measured.  This measurement depends on the index of refraction of quartz at high 

pressure, which is not known.  In separate experiments (discussed in Chapter 3), we 

determined the index of refraction correction for quartz in the high-pressure regime to be 

χ = 1.16 (± 0.04), which is comparable to the value at low pressures of χ = 1.08 [41]. 

For experiments above ~400 GPa, drive-decay effects cause a significant 

breakdown of steady-shock conditions, as shown in Fig. 1.3.c.  The two-wave structure at 

the free surface persists until, with increasing drive stress, only a single free-surface 

arrival is observed, corresponding to a single, inelastic shock-wave.  There are two 

explanations for this.  One possibility is that a single-shock front decays below a critical 

limit during the experiment, and splits into two waves.  It is also possible, that, on shock 

breakout into diamond, a high-amplitude, attenuating precursor wave forms ahead of the 

attenuating inelastic shock, in some cases being overrun by the inelastic wave before 

reaching the free surface and in other cases surviving, depending on the relative decay 

rates of the two waves.  However, as our interest for these decaying-wave experiments is 

entirely in the state of the elastic precursor observed at the time of free-surface arrival, 

the state of the trailing inelastic wave does not matter significantly. 
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Figure 1.2.  General target design.  In some cases, two diamonds were stacked on each 
other, forming a single diamond with an internal interface, which was partially
aluminized.  An anti-reflection coating was used on quartz, but was damaged in some
cases during target assembly.  For some experiments an anti-reflection coating was also
used on the diamond.  Targets are situated in an evacuated chamber during the
experiment.  The drive laser strikes the target from the left, while VISAR and SOP view
the target from the right. 
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Figure 1.3.  Line VISAR records of the 
three types of experiments used in the 
present study.  Shot dh14 (a) used a 
single diamond target, D, with an 
adjacent quartz reference window, Q. 
Shot dh8 (b) used a stacked diamond 
target with a section of the internal 
interface aluminized, Di, and an adjacent 
quartz reference.  Shot 43637 (c) used a 
single diamond target.  Records (a) and 
(b) used a VISAR VPF (χ = 1) of 6.221
km/s/fringeshift and record (c) used a 
VPF (χ = 1) of 16.09 km/s/fringeshift. 
The vertical axis is about 950 μm 
fullscale for (a) and (b), and 300 μm
fullscale for (c).  Events are indicated by 
numbered triangles.  1: breakout from 
aluminum base, diamond and quartz are 
rendered opaque and reflection from 
aluminum ceases (reflecting shock front 
is visible in quartz in (a), and diamond in 
(c); for other cases, only an intensity 
drop is registered at breakout, with φ = 0 
since reflection comes from unmoving 
surfaces ahead of the shock).  2, 3: 
arrival of elastic, inelastic waves 
(respectively) at diamond free surface, 
fringes shift.  4: arrival of elastic wave at 
internal aluminized interface, wave is 
transparent and fringes shift.  5: arrival of 
inelastic wave at internal aluminized 
interface, wave is nontransparent and 
reflection from internal interface ceases. 
6: arrival of shock at quartz free surface, 
more distinct in shot (b) due to damaged 
AR coating.  In (c) the diamond shock is 
strongly decaying, and transitions from 
reflecting to opaque during sample 
transit; the reflectivity of the free surface, 
reduced with an anti-reflection coating, 
increases on shock arrival. 
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Figure 1.4.  Free surface velocity uf vs. normalized time, given as the time after the shock
enters the diamond divided by the thickness of the diamond, for orientations <100> (a),
<110> (b) and <111> (c).  Normalization to diamond thickness results in identical arrival 
times for disturbances traveling at the same velocity.  Ends of records, when shown,
correspond to end of streak windows. 
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Figure 1.5. (a) Streak optical pyrometer record showing thermal emission (in counts) vs. 
time and target position.  Corresponding VISAR record shown in (b) is the same as in
Fig. 1.3.b; labeling is the same as in Fig. 1.3.  The emission from the quartz emerges
directly from the shock front; variations in the intensity with time between events 1 and 6 
correlate with variations in shock-front velocity and stress.  Between events 4 and 5 there
is an absence of emission from the first wave in diamond.  Emission in diamond emerges
from behind the inelastic wave, and mimics the temporal variation in the quartz emission. 
We attribute this effect, visible in all experiments, to thermal emission from the quartz
shock front scattering through the adjacent shocked diamond and into the pyrometer (c).
This is due to the apparent translucence of inelastically shocked diamond and the faster
shock velocity in diamond than in quartz.  In other words, shocked diamond itself is not
strongly emitting up to shock stresses of at least 400 GPa. 
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Figure 1.6. White-light reflectometry technique described in reference [32].  Image (a) 
shows a reference pulse reflected from aluminum, showing wavelength structure with
time.  The maximum wavelength at a given time is given by the red curve.  Image (b) 
shows a similar pulse in which a strong shock breaks out from aluminum into <110>-
oriented diamond at the moment of peak wavelength excursion.  The rest of the pulse is
strongly attenuated due to non-transparency of shocked diamond in a wavelength band 
between 532 nm and 750 nm.  The stress in diamond is ~100 GPa. 
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Determination of Hugoniot states: 

 

To determine the stresses and densities of shock-compressed states, we used the 

Rankine-Hugoniot equations, with shock speeds D, particle speeds u, densities ρ, 

volumes V=1/ρ, and longitudinal shock stresses P, which are equivalent to pressure in the 

case of strengthless, hydrostatic conditions behind the shock.  

For a single shock wave, the Hugoniot equations are:  

11001 uDPP ρ+=  (Eq. 1.2)

and 

11

1
01 uD

D
−

= ρρ  (Eq. 1.3) 

where subscripts ‘0’ and ‘1’ indicate conditions ahead of and behind the shock front, 

respectively.  For a two-wave system, with subscript ‘2’ indicating conditions behind the 

second shock front, the description of the final state becomes: 

))(( 1212112 uuuDPP −−+= ρ  (Eq. 1.4)

and 
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12 uD

uD
−
−

= ρρ  (Eq. 1.5)

Equations 1.4 and 1.5 reduce to the one-wave equations 1.2 and 1.3 if the intermediate 

state 1 is set to the initial conditions u1 = 0, ρ1 = ρ0 = 3.515 g/cm3 for diamond, and P1 = 

P0 = 0. 

 These relations assume steady-state conditions ahead of and behind the shock 

front, and that the shock itself is a discontinuity in P, ρ, and u.  In real materials, and also 
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due to experimental limitations, these assumptions are not always satisfied, as will be 

discussed.  However, in most cases, these equations are expected to be applicable given 

that the associated uncertainties have been considered. 

The three orientations of diamond examined in the present study are the only ones 

expected to respond with ideal one-dimensional motion of both shock front and shocked 

matter for purely elastic compressions [42-44].  Other orientations could display quasi-

shear waves, which are not consistent with the one-dimensional Rankine-Hugoniot 

relations Eq. 1.2 to 1.5.  Furthermore, other orientations are likely to exhibit multiple 

elastic shocks. 

We now describe how velocities D1, u1, D2 and u2 – and hence, the stress and 

density conditions behind the two shocks – are obtained.   The Hugoniot is the locus of 

possible P-ρ-D-u states that can be achieved by shock compression of a material.  In 

these experiments, the two-wave shock system achieves states on two separate Hugoniots 

– the elastic Hugoniot, in which compression is approximately elastic and uniaxial, and 

the inelastic Hugoniot, where significant inelastic deformation is occurring. 

Measurement of u1: 

The particle velocity behind the first wave u1 is determined from the free surface 

velocity uf1 after arrival of the first wave, using the common assumption uf1 = 2u1 [7, 18, 

45, 46].  This assumption is particularly appropriate for elastic waves as the compression 

and release processes are isentropic and hence reversible.  The uncertainty in our 

measurement is estimated from the full range of particle speeds observed between first 

and second wave arrivals at the free surface.  Due to the reduction in free-surface velocity 

after the initial arrival of the first shock, the upper bound on the particle velocity (u1 + δu1) 
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is that observed immediately after arrival, and the lower bound (u1 - δu1) is observed, 

typically, right before the second wave arrives at the free surface.  The change in free-

surface velocity with time is not large and should not have a major effect on the 

interpretation of measurements through the steady-wave assumption implicit in the 

Rankine-Hugoniot relations. 

In principal, the fringe shift observed on arrival of the elastic precursor at the 

internal aluminized interface of stacked targets is related to u1 through χ, which in this 

case depends on the index of refraction of elastically shocked diamond, which is not 

known a priori.  However, measurement of u1 at the free surface, and (φ + b) at the 

internal interface, can be used to determine χ through Eq. 1.1.  We find that χ ~ 2 for 

both <100>-and <110>-oriented diamond under large elastic-strain conditions.  This 

implies a strong increase in the index of refraction of diamond observed along the 

longitudinal (wave-propagation) direction at large uniaxial strain, in contrast to the 

decrease in index found under hydrostatic stress [47, 48]. 

Measurement of D1: 

 The shock velocity of the first wave D1 is determined from the transit time 

through the diamond and the diamond’s thickness.  Both the first and second shock are 

presumed to originate at the aluminum-diamond interface at the moment the shock enters 

the diamond.  The arrival time of the first shock at the free surface is identified by the 

first jump in free-surface velocity.  For stack targets, first-wave arrival is also recorded at 

the internal aluminized interface, where it is identified by the shift in VISAR fringes. 

 The velocities of the first waves are comparable to the longitudinal elastic sound 

speeds in each orientation, cL<100>=17.53 km/s, cL<110>=18.32 km/s and cL<111>=18.58 
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km/s, determined from the ambient pressure elastic constants [44, 49].  The high shock 

velocities of the first wave, in addition to the characteristic decay in particle velocity 

behind the shock and the high transparency of this wave, are evidence that the first wave 

is indeed an elastic precursor. 

In all five experiments using stacked diamonds in which elastic-precursor transits 

were definitively measured for both diamonds, the velocity in the first diamond was 

greater than in the second (Fig. 1.7), by ~1 km/s.  While the change in velocity was on 

the order of the measurement uncertainty, it is statistically significant that all 5 

experiments exhibited this reduction in precursor speed in the second diamond; 

furthermore the uncertainty in these measurements is primarily systematic, such that the 

difference in velocity is better constrained than the magnitude.  This is consistent with the 

observation of decreasing particle velocity behind the elastic precursor, in that both 

phenomena are associated with stress relaxation behind elastic shocks [21, 22, 38, 50].  

As the decrease in velocity is on the order of the absolute uncertainty, we use the average 

of the velocities as the measurement of D1 for stacked targets. 

For a subset of our elastic-wave data at the highest stresses, where experiments 

produced strongly decaying shock waves, the only measurement on the elastic wave was 

the particle velocity u1 made upon arrival at the free surface.  To determine D1 in these 

cases, various elastic Hugoniot models, fit to the elastic-wave data at lower stresses,  

were extrapolated into the high-stress regime and used to estimate D1, P1 and ρ1.  These 

models, including linear D-u and Lagrangian and Eulerian finite strain fits, are discussed 

below and are described in detail in Chapter 2.  In some of the highest-stress precursor 

studies, CVD polycrystalline diamonds were used, which were assumed to be well 
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represented by the extrapolation of the <111> elastic Hugoniot.  Using this approach, 

precursors with longitudinal stresses up to P1 ~ 200 GPa are inferred. 

Measurement of D2: 

The inelastic shock-wave velocity D2 was determined in two ways: a) by shock 

arrival at the internal aluminized interface of a stacked target, in which the arrival was 

selected by the sudden loss of optical transparency and, at the lowest stresses, a visible 

fringe shift before transparency was lost; and b) at the free surface, where arrival was 

identified by the second jump in free-surface velocity.  At the internal interface, the 

movement of the interface due to the earlier arrival of the elastic precursor was accounted 

for by adding to the diamond thickness an amount equal to the precursor particle velocity 

u1 multiplied by the time between elastic- and inelastic-wave arrivals. 

At the free surface, the effect of the earlier arrival of the elastic precursor is more 

complicated, as interaction between the free-surface release of the elastic precursor and 

the approaching inelastic wave must be considered [19, 45, 51, 52].  A schematic of this 

interaction is shown in Fig. 1.8:  L is the sample thickness, D1, u1 and t1 are the shock 

velocity, particle velocity and transit time of the elastic precursor, respectively; D2 and t2 

are the shock velocity and apparent arrival time of the inelastic wave, D1R is the speed of 

the rear-propagating rarefaction wave from the free surface release of the precursor, and 

D3 is the speed of the leading wave following interaction between the waves D1R and D2 

at time ti.  We seek to use this interaction to measure D2. 

We begin with the assumption that D1R is a sharp (shock-like) rarefaction with 

D1R = D1 - u1.  The assumption for D3 is often the least certain [18, 45, 51], and its 
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estimation will be discussed shortly.  Fig. 1.8 puts several constraints on the free-surface 

interaction due to the first reverberation: 

)(2)( 121232 ttuttDtDL ii −−−+=  (Eq. 1.6.a) 

ii tDttuDL 2111 ))(( +−−=  (Eq. 1.6.b) 

11tDL =  (Eq. 1.6.c) 

2
/
2tDL ≡  (Eq. 1.6.d) 

where /
2D  is the apparent second-wave velocity if the elastic precursor is not accounted 

for.  The unknown parameters are D2 and ti.  Solving for D2 with Eq. 1.6.a and 1.6.b, we 

obtain 
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This correction is also described by Ahrens et. al. [51], but differs from another common 

formula proposed by Wackerle [45]:  
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We use Eq. 1.7 in our analysis.  In any case, the difference in the corrections to D2
/ 

implied by formulae 1.7 and 1.8 differ by on the order of 10%, which is not significant 

given other uncertainties in this analysis. 

The arrival time t2 was selected by the time of the sharpest rise in free-surface 

velocity – i.e. the point of maximum strain rate – during the inelastic-wave arrival.  In 

some experiments on <100> and <110> diamond with final stresses from 200-300 GPa, 

the inelastic wave arrival event featured a sharp, leading discontinuity with a velocity 

jump nearly equal to the first jump on arrival of the elastic precursor, suggesting that this 
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jump corresponded to an elastic shock reverberation – that is, the first reverberation in 

Fig. 1.8.  This first reverberation arrival was also visible in the wave profiles of Knudson 

[24] for shock compression to similar final stresses in the <110> orientation of diamond, 

and has also been observed in silicon [52, 53], aluminum [19] and MgO [20].  The 

reverberation shock had a slightly larger free-surface velocity jump than the first.  This 

could be a result of irreversible structural changes, such as work hardening, due to the 

first elastic precursor [19], or could be a manifestation of precursor attenuation, as the 

reverberation shock has less time to decay than the original precursor.  The absence of a 

sharp reverberation in <111> diamond at these same conditions suggests some difference 

in the reverberation process.  This could be due to a longer risetime of the inelastic shock 

in that orientation, which would produce a broader reverberation wave instead of the 

sharp wave that would form on interaction with a discontinuous shock.  At P2 < 200 GPa, 

no sharp elastic reverberations are observed in any orientation. 

For the estimation of D3, we began with the approximation that D3 = D1 + 2u1, 

which assumes that diamond is re-stressed following the release of the initial elastic 

precursor to support a new elastic wave with the same properties as the first [18, 45, 51].  

This assumption seems particularly realistic for the experiments mentioned above where 

t2 is identified by the arrival of an elastic-like reverberation shock at the free surface.  

However, by comparing the velocity D2 measured in the first diamond of a stacked target 

with that determined by applying the free-surface correction, we find that the latter 

approach consistently yields a slower velocity.  The value of D3 which results in the best 

agreement between the two measurements is 77-87% of D1 + 2u1 for P2 between 150 and 

300 GPa.  This could be due, in part, to systematic differences in the way inelastic-wave 
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arrivals were selected at the internal interface (loss of transparency) and the free surface 

(point of maximum strain rate), since it is possible that transparency loss occurs earlier 

than the maximum strain-rate point in the shock front.  We considered the range of (D1 + 

2u1) > D3 > (D2 + 2u1) in applying the free-surface correction, in which the lower bound 

was selected because it closely matched the lower suggested value of D3. 

For single-diamond targets, D2 was determined using the free-surface correction 

as in Eq. 1.7.  For stack targets, D2 was determined from the uncertainty-weighted 

average of the free-surface correction and the first-diamond transit velocity.  At P2 < 200 

GPa, the shock velocity obtained with the free-surface correction becomes increasingly 

imprecise, due to increased time between the reverberations and the uncertainty in D3.  

For single targets, this increases the measurement uncertainty in D2; for stacked targets, 

the weighted average is dominated by the more precisely-known transit velocity of the 

first diamond.  This is one advantage of having an internal surface in the target at which 

to measure shock arrival in two-wave experiments. 

At P2 > 400 GPa, drive-decay effects resulted in a large range of shock velocities 

being achieved throughout the experiment.  At these stresses, the reverberation time at 

the free surface is so small that the free-surface correction has a negligible effect on the 

shock velocity.  It is observed in stacked targets that D2 measured after first-diamond 

transit was significantly larger than the D2 measured after transit of the stack.  This 

difference could only be explained by a large reduction in shock velocity during transit.  

The decay in shock velocity was also apparent when the shock front was initially 

reflecting on breakout into diamond.  Thus for P2 > 400 GPa, inelastic-wave conditions 

are either reported with appropriately large uncertainties, or are not reported. 



 30

Measurement of u2, P2, and ρ2: Impedance Matching: 

We use the method of impedance matching to determine the final state of the 

inelastic shock, finding u2, P2 and ρ2 simultaneously, using the measured shock 

conditions in the aluminum base, the measured elastic precursor conditions and the 

measured inelastic wave velocity D2.  The impedance match construction is shown in Fig. 

1.9.  The state of diamond immediately prior to the arrival of the inelastic shock is given 

by the conditions of the elastic precursor.  On arrival of the inelastic wave, diamond is 

taken along the Rayleigh line in P-u space, which has a slope ρ1(D2 - u1), from the state 

of the elastic precursor to the final state.  The intersection of the Rayleigh line with the 

reshock-response of aluminum defines the final state.  The mirror reflection of the 

aluminum Hugoniot about the initial driver condition is known to accurately represent the 

reshock (and release) response [54] at the conditions studied here.  For the aluminum 

Hugoniot, we used the Sesame 3700 tabular equation of state [55], which is a good 

description of the Hugoniot below ~500 GPa [54], the upper pressure limit in aluminum 

examined in this study. 

The initial state of the aluminum is found by reverse impedance-matching from 

the quartz reference window, using the directly-measured shock conditions in quartz.  We 

used the Sesame 7360 tabular EOS [56] which is a good representation of the quartz 

Hugoniot data for P > 40 GPa and thus for all the experiments described here.  The quartz 

conditions are determined by a combination of interferometric velocity measurements of 

the shock front; velocity measurements from transit of the quartz window; constraints on 

shock-front stability using streak optical pyrometry; and the scaling of quartz conditions 

with laser energy, which was needed to establish quartz conditions in a few experiments 
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where a direct measurement was not possible.  The measurement of the quartz conditions 

is a major source of uncertainty in the determination of the second-wave state. 

Alternatively, u2 could be estimated from the free-surface release velocity in the 

same manner as u1 was obtained, that is by assuming that u2/uf2 = 0.5.  This assumption 

has often been used to determine the conditions behind the second wave in elastic-

inelastic compression experiments (e.g. [46, 52, 57]).  However, in diamond this 

assumption significantly underestimates u2.  We observe ratios of u2/uf2 ~ 0.65 for <110>- 

and <100>-oriented samples and a ratio of u2/uf2 ~ 0.85 for <111>-oriented samples.  

These ratios appear to be roughly constant over the stress range studied here.  This was 

also reported by Kondo and Ahrens [7], who observed u2/uf2 ~ 0.6 for their nearly-<111> 

oriented samples.  The deviation from the frequently assumed behavior of u2/uf2=0.5 is 

likely related to the details of the free-surface reverberation and the strength of diamond 

on release, and it is beyond the scope of this study to consider this phenomenon 

quantitatively. 

Comment on Uncertainties: 

For elastic waves, uncertainties in shock velocities are primarily due to 

uncertainty in transit time and sample thickness.  For inelastic waves, the uncertainty in 

shock velocity was due to a combination of transit-time uncertainty, sample thickness 

uncertainty, and, for arrival measurements made at the free surface, the uncertainty in the 

free-surface correction as given by the range of D3. 

Uncertainties in transit times are generally a combination of those due to the 

sweep rate of the streak camera; the reduced time resolution due to the width of the streak 

camera entrance slit; the reduced time resolution due to the delay associated with VISAR 
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etalon; ambiguities in the identification of arrival times; and variations in transit time 

with spatial position, which, due to the high spatial uniformity of the laser drive, were 

due primarily to variations in target thickness.  Usually, a given arrival measurement is 

uncertain by ~100-200 ps, and transit-time measurements by ~150-250 ps.  Diamond 

thicknesses are uncertain by typically 0.5-2%, primarily due to variations in thickness 

over the region studied in the experiment. 

When determining transit times, it is critical to use a self-consistent criterion for 

identifying arrival times that accounts for the finite time resolution of the VISAR.  For 

example, shock arrival at the aluminum-diamond interfaces resulted in an intensity drop; 

however free-surface arrival was often associated with an intensity rise.  Due to the finite 

time-width of events in the VISAR, it would be inappropriate to define the transit time as 

the difference between the moment of intensity drop and the moment of intensity rise, as 

this does not use a consistent measure of arrival time; instead, it is more appropriate to 

measure the timing between two consecutive intensity drops, or two intensity rises.  This 

is often possible, if temporal intensity profiles are integrated over spatial widths much 

smaller than the VISAR-fringe period.  Significant systematic errors are incurred if this 

effect is ignored. 

Unsteadiness of the laser drive provided an additional source of uncertainty.  This 

was accounted for in quasi-steady-drive experiments by using a large uncertainty in the 

quartz reference conditions to account for variations in drive pressure.  For decaying 

shots, the uncertainty in the shock-wave velocity in diamond was increased based on the 

decay in velocities observed in stacked targets.  Estimation of these uncertainties is 

discussed in greater detail in Appendix A. 
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 Uncertainties in the directly measurable quantities D1, u1, D2 and DAl are reported 

as mean values with an associated uncertainty that was selected conservatively to contain 

approximately two standard errors; that is, these uncertainties represent approximately a 

95% confidence interval for the measured quantities. 

Fig. 1.9 shows the impedance-match construction, with the first shock point 

established through the Rankine-Hugoniot equations and the second shock point 

established through impedance matching.  Uncertainties in quantities are represented in 

two ways: by orthogonal uncertainties about a central point (error bars), and by a 

confidence-bounding region which appears as a polygonal shape.  The confidence-

bounding region encompasses all possible solutions to the Rankine-Hugoniot equations 

and impedance-match construction that exist within the uncertainties of the directly 

measurable quantities; that is, this region is approximately a 95% confidence bound.  

Confidence-bounding regions were established by a Monte-Carlo uncertainty-

propagation method to fully account for covariance between the directly measured 

quantities and the calculated stresses P1 and P2, densities ρ1 and ρ2, and particle velocity 

u2.  It can be seen in Fig. 1.9 that orthogonal error bars fail to adequately represent the 

true uncertainty of the measurement.  In all plots where orthogonal uncertainties 

misrepresent the true uncertainty, a confidence-bounding region is shown instead.  In 

table 1.1, data has been reduced so that orthogonal uncertainties are reported for all 

quantities P1, ρ1, u2, P2 and ρ2, however information is lost by using this approximation. 

The confidence-bounding region is necessarily polygonal in P-u space, due to the 

geometry of impedance matching.  In other spaces, particularly P-ρ, the confidence-



 34

bounding region is not exactly polygonal, but in most cases can be adequately 

represented by a four-cornered polygonal region. 
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Figure 1.7.  Elastic precursor velocity vs. propagation distance.  Red, green and purple
coloration are data on <111>, <110> and <100> orientations, respectively.  Black points
are data of Kondo and Ahrens [7].  Lines connect the two velocities measured in stacked-
diamond targets.  Elastic shock speed is defined as (d2 - d1)/(t2 - t1), where d1 and t1 refer 
to the thickness and arrival time, respectively, corresponding to the first observed shock 
arrival, and d2 and t2 to the second arrival.  Propagation distance is defined as (d2 - d1)/2. 
Uncertainties in thickness are on the order of 1% and are not plotted.  To completely
describe precursor variability (specifically, the variation of precursor conditions with
inelastic-wave conditions) a third axis showing the conditions of the inelastic wave would
be needed. 
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Figure 1.8.  Time-distance plot of waves and reverberations due to release of the elastic 
precursor at the free surface before the arrival of the inelastic wave, after [19, 51, 52]. 
Rarefactions are approximated as discontinuous waves. 
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Figure 1.9.  Impedance-match technique for a two-wave system, shot dh13.  The path to 
the first state is indicated by Rayleigh line R1, with a slope of ρ0D1, and the path from the 
first to the second state is indicated by Rayleigh line R2, with a slope of ρ1(D2 - u1).  The 
Hugoniot of aluminum (Al) is reflected (M) about the initial state of Aluminum, 
intersecting with the quartz Hugoniot (Q) and the Raleigh line R2, determining the state
in the second wave in diamond.  For R1, R2 and M, the solid lines represent the central
solution and the dashed lines the uncertainty at ~ 95% confidence.  Uncertainties in first-
and second-wave states are represented by polygonal confidence-bounding regions; 
orthogonal uncertainties in P and u, represented by the error bars, misrepresent the true
measurement uncertainty due to covariance. 
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Modeling the hydrostatic Hugoniot response of diamond: 

 

The high-pressure hydrostatic isotherm of diamond is well known from a 

combination of elastic constant measurements through Brillouin and Raman scattering 

[49, 58]; diamond-anvil cell x-ray diffraction measurements to static pressures of 140 

GPa [59]; improved constraints on the ruby fluorescence static pressure scale [60]; and 

first-principles calculations [61, 62].  Since no phase transitions are expected in solid 

diamond until at least 400 GPa, and likely as high as 1000 GPa [6, 36], it is expected that 

the isothermal equation of state measured to 140 GPa can be reasonably extrapolated into 

the high-pressure regime with the appropriate equation of state model. 

In making a comparison with shock wave measurements, the difference between 

the isotherm and shock Hugoniot at high stresses must be considered.  To do this, we first 

assume that the final state of the shocked system is one of hydrostatic stress.  In other 

words, the shock response of diamond will be modeled as if it were that of an elastic-

isotropic solid.  The extent to which the measurements deviate from this predicted 

hydrostatic shock response will then be used to directly determine the strength of 

diamond under elastic and inelastic loading. 

 The shock response of a material can be predicted by a thermodynamic pathway 

that considers isentropic compression to the final volume, V2, followed by isochoric 

heating at V2 to final pressure P2 and internal energy E2.  The isentropic compression step 

can be described by a third-order Birch-Murnaghan equation of state [63], where the 

subscript S is used to denote isentropic conditions. 

[ ]fKffKfP SSS )4)(2/3(1)21(3)( /
0

2/5
0 −++=  (Eq. 1.9)
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Where the Eulerian finite strain f = (1/2)[(V0/V)2/3-1], K0S is the isentropic bulk modulus, 

and SSS PKK )/( 0
/
0 ∂∂=  is the pressure derivative of the bulk modulus.  The isochoric 

heating step can be described by the Gruneisen equation of state, VEPV )/( ∂∂=γ , where 

γ is the Gruneisen parameter, leading to 

[ ])()()/()()( 2222222 VEVEVVPVP SS −+= γ  (Eq. 1.10)

The internal energy of the final state E2 is defined from the Rankine-Hugoniot equations 

for a 2-wave system as 

( )( ) ( )( )10012
1

21122
1

02 VVPPVVPPEE −++−+=−  (Eq. 1.11)

With Eq. 1.11, and considering that SS VEP )/( ∂∂−= , we can write Eq. 1.10 as 
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And, with Eq. 1.9, we have 
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 (Eq. 1.13)

In this analysis, the fact that the elastic precursor is in a state of anisotropic stress 

does not need to be considered explicitly; only the isotropically stressed final state is 

important.  When there is no elastic precursor, that is, V1 = V0, and P1 = P0, this 

prediction describes the case of single-wave shock compression [63].  The effect of 

considering the precursor is to increase the thermal pressure PTh = P2 - PS at a given 
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volume.  At P2 ~ 150 GPa in diamond, PTh ~ 5 GPa for a 2-wave treatment, compared to 

a PTh ~ 2 GPa for a 1-wave treatment that ignores the elastic precursor.  Evidently this is 

due to the larger energy needed to create the 2-wave system compared to a 1-wave 

system, for compression to the same final volume.  This can be verified by considering 

that the energy Eq. 1.11 can be re-written as ( )2022
1

02 )1()( VbaaVPEE −+−=− , 

where 21 / PPa = , 21 /VVb =  and P0 = 0.  For elastic-isotropic states just beyond the HEL, 

P1 ≈ P2 and a ≈ 1, while V2 < V1 and b > 1.  This results in higher energy for the two-

wave case than for the single-wave case in which a = b = 1. 

Contrastingly, elastic-plastic compression states just above the HEL would exhibit 

both P1 ≈ P2 and V2 ≈ V1, reducing the Hugoniot energy to values close to the 1-wave 

value – however, the deformed state will not be under isotropic stress and its temperature 

is not predicted here.  Anisotropic compressions at shock pressures less than the HEL, or 

elastic-plastic compression states beyond the HEL, require a different approach to 

calculate shock heating effects [43, 64]. 

 The predicted shock velocity and particle velocity D2 and u2 can now be 

determined from the calculated stress and density, P2 and ρ2 = 1/V2, by rearranging the 

Hugoniot equations 1.4 and 1.5, giving 

)(
))((

121

1211
2

211212
2

1

ρρρ
ρρρρρρρ

−

+−−−
=

uuPP
D  (Eq. 1.14.a)

21

121211212
2

))((
ρρ

ρρρρρρ uPP
u

+−−
=  (Eq. 1.14.b)

For inelastic shock-wave velocities D2 ≥ D1, the system will be overdriven and 

single-wave analogues of Eqs. 1.13 and 1.14 must be used. 
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For the calculations of P2, ρ2, D2 and u2 presented here, we have considered the 

parameters of the elastic precursor P1, ρ1, D1 and u1 to be fixed at the lowest-stress 

precursor conditions observed for each crystallographic orientation (shots dh14 <111>, 

dh9 <100>, dh6 <110>).  The uncertainties in the precursor states are not used in the 

predictions for the sake of clarity.   Accounting for the measurement uncertainty in the 

precursor state, or the scaling of the precursor state with the inelastic-wave state or 

propagation distance, will somewhat affect the D2-u2 predictions, but will not noticeably 

affect the P2-ρ2 predictions.  Indeed in P-ρ space (e.g. Fig. 1.11), the predicted 

hydrostatic Hugoniot is essentially the same regardless of whether a low-stress precursor 

from <111> or a high-stress precursor from <100> or <110> is used. 

 The thermodynamic parameters required by our model are SK0 , /
0SK  and γ.  We 

define these parameters in what follows. 

The isentropic bulk modulus K0S can be obtained directly from the isentropic 

elastic constants of diamond at ambient pressure, known most accurately via Brillouin 

scattering [49], through the relation for a cubic crystal [65] K0S=(C11+2C12)/3, giving 

K0S=444.8 (± 0.7) GPa.  Alternatively, we can obtain K0S from the isothermal bulk 

modulus obtained from static compression measurements, K0T=437.5 (± 8.5) GPa [60], 

where the subscript T is used to denote isothermal conditions.  The relationship between 

K0T and K0S  is [66, 67] 

( ) 1

1

0
2

00 11 −

−

+=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+= αγ

ρ
α

T
C

TK
KK

p

S
ST  (Eq. 1.15)

Using the volumetric thermal expansion α = 3.15×10-6  [68], temperature T = 300 K, 

density ρ = 3515 kg/m3, and the specific heat at constant pressure CP = 515.5 J/kg⋅K [69], 
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it is found that TS KK 00 − = 0.3 GPa.  While both measurements are consistent with each 

other, we use the more precise value of K0S measured by Brillouin, and its uncertainty, in 

our model. 

 The Gruneisen parameter γ = αK0S/ρCP.  At ambient conditions γ0 = 0.773.  In our 

model, as in [63], we assume that the Gruneisen parameter varies with compression in the 

manner of γ = γ0(V/V0).  However, at P2 < 400 GPa, V/V0>0.7, and models are not 

significantly different if we use a constant γ = γ0. 

 The first pressure derivative of the bulk modulus under isentropic conditions 

SSS PKK )/( 0
/
0 ∂∂=  can be determined, as for the bulk modulus K0S, from the measured 

elastic constants or from isothermal compression measurements, as follows.  We have the 

following relation between TS PK )/( 0 ∂∂ , the pressure derivative of K0S at constant 

temperature, and the second- and third-order isentropic elastic constants in a cubic crystal 

[65, 70] 
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which gives TS PK )/( 0 ∂∂ = 4.52 using third-order elastic constants obtained semi-

empirically from analysis of Raman data [58].  Isothermal compression experiments have 

empirically determined TTT PKK )/( 0
/
0 ∂∂=  to range from 3.59 to 4.12 [60].  We can 

determine /
0SK  from TS PK )/( 0 ∂∂  and TT PK )/( 0 ∂∂  with the following selected 

thermodynamic relations after Spetzler et. al. [67] and Barsch [66]: 
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where 
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and 
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The above relations are completely constrained by experimental data, 

specifically ( )PT∂∂ /α = 2x10-8
 /K2 [68], ( )PV TC ∂∂ / = 3.348 J/kg⋅K2 [69], and 

( )PS TK ∂∂ / = -7.2x106 Pa/K [71].  From Eq. 1.17.c, TSSS PKPK )/()/( 00 ∂∂≈∂∂ , and thus 

the elastic constants have directly determined /
0SK  = 4.52 by Eq. 1.16.  Using all 

relations in Eq. 1.17, we obtain /
0

/
0 TS KK −  = 0.07, and thus /

0SK = 3.93 (± 0.27) based on 

static compression and other empirical thermodynamic data.  The value of /
0SK  obtained 

from the Raman-based semi-empirical third-order elastic constants is close to, but not 

consistent with, this value.  We use the value derived from static compression and its 

uncertainty to model the hydrostatic isentrope (Eq. 1.9) and Hugoniot (Eq. 1.13) – except 

in a particular case that will be discussed. 

We note that our model assumes a decrease in γ with increasing pressure and 

density, which is inconsistent with the positive value of the derivative ( )TP∂∂ /γ  in Eq. 

1.17.d at 300 K and ambient pressure.  This is due to the large value of ( )PV TC ∂∂ /  at 

ambient conditions, resulting from the high Debye temperature of ~1800 K for diamond.  

At higher temperatures, ( )TP∂∂ /γ  will become negative [72].  In any case, in the 
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compression range of interest here, small changes in γ have a minor effect on the 

predicted Hugoniot. 

The hydrostatic Hugoniot obtained from the above parameters, and its uncertainty, 

is presented in Figs. 1.10 and 1.11 for each of the three orientations of diamond studied 

here.  Also shown is the isentropic compression response, which is very nearly equal to 

the isothermal, or ‘cold’, compression response, which takes the same functional form as 

Eq. 1.9 but uses isothermal K0T  and /
0TK [65]. 

Another commonly used equation of state to describe materials at large 

compression is the Vinet EOS.  The deviation between the Vinet EOS and the Birch-

Murnaghan EOS used in our model,  PBM-PVinet,  is about 1-2 GPa  at 150 GPa and about 

10-20 GPa at 400 GPa.  The choice of equation of state is a small source of error in the 

calculations of the hydrostatic Hugoniot relative to the uncertainties in SK0 and /
0SK , and 

we do not consider it further. 

In the hydrostatic model, as u2 approaches u1 and P2 approaches P1, it is predicted 

by Eq. 1.14 that D2 should approach u1.  Thus D2 is expected to be as low as ~1 km/s for 

stresses just in excess of the HEL.  Calculating the bulk sound speed cB(ρ)= SddP )/( ρ  

from the isentrope (Eq. 1.9), it is predicted that D2 < cB until pressures of 300-400 GPa 

(Fig. 1.10) for an ideal elastic-isotropic response.  In contrast, an elastic-plastic material 

response would imply, for stresses just in excess of the HEL, that D2 ≈ cB [18].  The 

phenomenon of shock waves traveling at less than the bulk sound speed has been 

observed in sapphire and silicon and is correlated with the considerable loss of strength 

on inelastic shock compression of those materials [18, 52]. 
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Figure 1.10. D-u data for diamond:  Elastic-wave (circles) and inelastic-wave 
measurements (squares).  When appropriate, uncertainties are represented by confidence-
bounding regions discussed in the text.  Data of Kondo and Ahrens [7] are shown as filled 
black circles and squares.  Colored data are new results on <100> (purple), <110> (green),
and <111> (red); for colored filled circles, D1 was estimated as described in the text. 
Colored dotted lines are linear D-u fits to the elastic wave data, centered on the ambient 
longitudinal sound speeds (colored triangles).  Colored solid lines are bounds on the
predicted hydrostatic Hugoniot response.  Black triangle is ambient bulk sound speed;
black dotted lines are bounds on bulk sound speed at high density, plotted against u
considering that u2~(V0-V) [73].  Data of Pavlovskii [23] are not shown and are discussed 
separately in Appendix D. 
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Figure 1.11.  Stress vs. density plot for diamond.  Symbols and coloration are the same as
in Fig. 1.10.  In this space, the hydrostatic Hugoniot response is nearly the same
regardless of crystallographic orientation; this is given by the black lines, which are the 
confidence limits of the hydrostatic prediction.  The grey region is the predicted
isentropic hydrostatic response, which is nearly equal to the isothermal hydrostatic
response.  Note that the hydrostatic Hugoniot is defined only above the HEL. 
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Discussion: 

 

Elastic precursor observations: 

 

The elastic precursor measurements show a significant variation with orientation.  

At low final stresses, the <100> and <110> orientations exhibit precursors of similar 

stresses and shock velocities, while the <111> orientation exhibits precursors of lower 

stress and significantly faster shock velocity.  The <100> and <110> precursors appear to 

scale more strongly in amplitude with final stress than the <111> orientation, at least 

initially  (Fig 1.11).  However, at high stress, the velocities of the <111> and <100> 

precursors increase substantially, while the velocity of <110> appears to remain 

relatively constant (Fig 1.10); this conclusion remains valid even if the precursor data 

based on elastic Hugoniot extrapolations is ignored.  This effect may have been observed 

in molecular dynamics simulations on the <110> orientation [74]. 

It is observed that the scatter in the data from the <100> and <110> orientations is 

considerably more pronounced than for the <111> orientation (Fig 1.10); this could be a 

manifestation of sample-to-sample variation in crystallographic orientation relative to the 

shock propagation direction which, as discussed earlier, may have been larger for <100> 

and <110> oriented crystals. 

The elastic-precursor data collected here compares well with that observed in 

previous studies.  Kondo and Ahrens [7] reported a precursor with P1=62 (± 5) GPa for 

final stress P2=217 (± 4) GPa in nearly-<111>-oriented diamond, comparing well with 

the precursors of P1=65 (± 8) GPa observed here for <111>-oriented samples that reached 
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the similar final-stress conditions.  In <110>-oriented diamond, Knudson et. al. [24] 

observed precursors with P1=95 (± 5) GPa for final stresses P2=225 (± 25) GPa, 

comparing well with precursor stresses of P1=91 (± 9) GPa measured here at similar final 

stress.  Zybin et. al. [75] found a precursor of P1=125 (± 15) in the <110> direction with 

molecular dynamics techniques; however, the final stress obtained in that study is not 

clear and thus we can not make a direct comparison with the present results. 

We take the Hugoniot elastic limits of diamond to be best represented by the 

weakest elastic precursor observed in each orientation, considering that yielding of 

diamond on increasing stress is coincident with the first formation of the two-wave 

structure.  These are ><100
HELP =80.1 (± 12.4) for the <100> orientation, ><110

HELP =80.7 (± 5.8) 

for the <110>, and ><111
HELP =60.4 (± 3.3) for the <111>.  It would be misleading to refer to 

all elastic precursors as ‘elastic limits’, as is common in the literature, since precursor 

stresses in some cases exceed the HEL by more than a factor of two.  As we did not 

observe the transition from a single-wave structure to a two-wave structure in these 

experiments, the actual HEL values may be somewhat lower than reported above; 

however, given the scaling of precursor stress with final stress, this overestimation should 

be on the order of the uncertainty. 

 The elastic-wave data presented here also provide the first measurements of the 

elastic Hugoniots of diamond.  The evaluation of elastic Hugoniots based on the 

measurements is discussed in more detail in Chapter 2, but the results are briefly 

summarized as follows. 

Work on other high-strength brittle solids suggests that a functional form based on 

material elasticity at finite strain is appropriate for describing elastic Hugoniots [41, 46, 
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57].  We find that such finite-strain models, based on independent measurements of the 

second- and third-order elastic constants of diamond [49, 58], describe the present elastic 

wave data on diamond, but in general, only when expanded to fourth order in strain.  

Thus, descriptions of the diamond elastic Hugoniots based on third-order expansions [44] 

are not entirely consistent with all the available data.  The finite strain models imply a 

nonlinear trend in D-u space, centered on the ambient-pressure longitudinal sound speeds; 

in this chapter, however, we have shown only linear fits in D-u space, centered on the 

ambient sound speeds (Figs. 1.10 - 1.12) as these are simple guides to the eye for 

representing the elastic wave data. 
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Observations of inelastic shock states: 

 

As for elastic compression, the response of diamond to inelastic compression 

depends on the shock-propagation direction. 

In D-u space (Fig 1.10), the inelastic shock response in each orientation is 

expected to be anisotropic, since, as shown for the predicted hydrostatic Hugoniots, the 

shock and particle velocity D2 and u2 vary with the conditions of the elastic precursor for 

conditions of similar P2 and ρ2.  Consequently, a direct comparison between the 

compressional response of each orientation is not possible in D-u space.  However, by 

considering the deviation from or agreement with the predicted hydrostatic responses, 

there does appear to be some orientation dependence in the final compression states.  

While the <100> and <110> orientations agree well with the hydrostatic response, the 

<111> data is significantly offset, at least at low stress.  The hydrostatic response is a 

prediction of the slowest velocity possible for the inelastic shock in diamond, and any 

waves exhibiting finite strength will travel faster than this.  This is consistent with the 

observations, with velocities either in agreement with the hydrostatic predictions or faster.  

Shock velocities D2 in the <111> orientation are comparable to the bulk sound speed 

cB(ρ2), while the shock velocities in the <100> and <110> orientations are significantly 

less than the bulk velocity. 

In P-ρ space (Figs. 1.11 and 1.13), the deviation from the hydrostatic response, 

and between different data, is not as pronounced as in D-u space.  Fig. 1.13 shows the 

most precise measurements on the inelastic wave conditions, at P2 ~ 150 GPa.  As 

observed in D-u space, the <110> and <100> data agree with the hydrostatic predictions 
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while the <111> response is significantly offset.  However, given the uncertainties in the 

measurements, it is possible that all orientations display an identical stress-strain response 

that is offset from the hydrostatic Hugoniot due to finite strength behind the inelastic 

wave.  It is also possible that the compression response differs considerably in each 

orientation; for example, it is possible that the <100> and <110> orientations show a 

hydrostatic shock response, but this is not possible for the <111> orientation.  Additional 

evidence for such an anisotropic P-ρ response will be considered below. 

At u2 > 4 km/s and P2 > 250 GPa, data on all orientations agree with the 

hydrostatic predictions, however, the considerable uncertainties in this regime make it 

impossible to assess any finite strength effects. 

The only previous Hugoniot data on diamond in which the two-wave structure 

was observed and accounted for in the analysis was obtained by Kondo and Ahrens [7], 

whose results are shown in Figs. 1.10-1.13.  One datapoint in that study is clearly offset 

from the hydrostatic predictions, while one is in agreement.  The data of Pavlovskii, for 

which no two-wave structures were observed, is less easy to compare to the present 

results, as discussed below and in Appendix D. 

In conclusion, the orientations of diamond that show a definite offset from 

hydrostatic behavior are <111> diamond (this study), and nearly-<111> oriented diamond 

(Kondo and Ahrens [7]). 
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Figure 1.12.  Close-up of the lowest-stress elastic precursors observed in the present 
study.  Symbols, lines and coloration are the same as in Fig. 1.11.  The lowest-stress 
precursors are taken to be equal to the HEL for each orientation.  The deviation of these 
data from the hydrostatic isentrope (grey) is related to the maximum shear stress that can
be supported in diamond without failure. 
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Figure 1.13.  Close-up of the inelastic-compression regime that shows a clear deviation 
from hydrostatic response.  Symbols, lines and coloration are the same as in Fig. 1.11. 
Three of our datapoints (with the smallest uncertainty) are shown, together with the
original measurements of Kondo and Ahrens.  Two datapoints show a distinct offset from
the hydrostat: our shot on <111> diamond and Kondo and Ahrens’ shot on nearly-<111> 
oriented diamond.  We conclude from these measurements that, at the very least, the
<111> orientation exhibits finite strength under inelastic compression. 
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The yield  strength of diamond: 

 

 The available data provide significant information on the strength of diamond 

under the application of dynamic stress.  This information is in two categories:  the 

strength of diamond under elastic loading (that is, the yield point on the elastic Hugoniot 

or the HEL), and the strength retained during yielding. 

 The deviation between the measured longitudinal shock stress P(V)= )(Vxσ and 

the hydrostatic pressure at the same volume PH(V), will be called the shear stress offset, 

after [18] 

)()()( VPVV Hx −≡σσ τ  (Eq. 1.18)

The shear-stress offset is directly measured in the present study, as illustrated in Figs. 

1.12 and 1.13. 

It is assumed in Eq. 1.18 and subsequent analysis that the thermal pressure is 

equivalent in the two states being compared, such that the stress offset can be attributed 

entirely to strength effects.  Deviations from this assumption are expected to be small in 

the case of diamond, as will be discussed. 

The mean pressure of the shocked system is defined as 

( ))()()()( 3
1 VVVVP zyx σσσ ++≡  (Eq. 1.19)

Where yσ and zσ are the lateral stresses along principal stress axes.  In the case of 

laterally isotropic stress, zy σσ = , while for laterally anisotropic stress zy σσ ≠ .  Finite 

strain compression models for a cubic crystal (Chapter 2) indicate that under purely 

elastic, uniaxial strain, the lateral stresses are isotropic for <100> and <111> compression, 

but not for <110>.  The deviatoric stresses are defined as  
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)()(/ VPVii −≡σσ  (Eq. 1.20)

where i is one of the principal axes of stress x, y or z. 

For a linear-elastic, elastically-isotropic material, the mean stress P (V) in an 

anisotropically stressed system is equal to the hydrostatic pressure PH(V) at the same 

volume and temperature [19].  However, this is not obviously the case for elastically 

anisotropic and nonlinear materials such as diamond.  Thus we explicitly consider the 

deviation between the mean stress and the hydrostatic stress ΔP, given by  

)()()( VPVPVP H Δ≡−  (Eq. 1.21)

The maximum shear stress in an anisotropically stressed system is  
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where y

maxτ  and z
maxτ are the maximum shear stresses in the x-y and x-z planes, respectively 

(x continues to identify the shock-propagation direction).  The maximum shear stress 

occurs at an angle of 45 degrees to the shock-compression direction. 

We rewrite Eq. 1.19 as 

)(
3
4

2
)()(

3
4)()( max

maxmax VVVVPV ave
zy

x τττσ =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
=−  (Eq. 1.23)

The average shear stress, ave
maxτ , is equal to y

maxτ = z
maxτ for the case of laterally isotropic 

stress. 

 Combining Eqs. 1.18, 1.21 and 1.23, 

)()()()( max3
4 VPVVPV ave

Hx Δ+=−= τσστ  (Eq. 1.24)
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 As the system is shocked through its HEL, yielding begins.  The maximum shear 

stress within a material at this yielding point, )(max HEL
ave Vτ , is the largest that can be 

sustained by the material before inelastic deformation occurs.  For inelastic compression 

states beyond the HEL, the shear stresses may be maintained (as in the elastic-plastic 

model), relaxed (as in the elastic-isotropic model) or varied with increasing pressure, as 

in, for example, the model of Steinberg and Guinan [76]. 

The magnitude of these strength effects can be examined in terms of the yield 

strength Y, given by the von Mises criterion 

( ) 2/1//2/1)2/3( iiY σσ=  (Eq. 1.25)

For laterally isotropic stress, this reduces to  

max2τ=Y  (Eq. 1.26)

For laterally anisotropic stress,  
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where the term ΔL accounts for the difference between the lateral deviatoric stresses.  

The yield strength can be evaluated at conditions of incipient yielding (V=VHEL) or at 

conditions where yielding has occurred (V<VHEL). 

 Two unknowns emerge from the preceding discussion: the difference between 

hydrostatic and mean pressure at a given volume, ΔP, and the difference between the 

deviatoric stresses /
yσ  and /

zσ  for laterally anisotropic stress systems, parameterized by 

ΔL, which applies specifically to the case of case of <110> diamond. 
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In the case of elastic strain, these terms can be calculated using finite strain 

models, as discussed in Chapter 2, which predict the longitudinal and lateral stresses at 

the condition of maximum elastic strain, the HEL.  Lagrangian and Eulerian third-order 

uniaxial strain models were examined, using the isentropic second- and third-order elastic 

constants of diamond discussed previously.  The hydrostat was calculated as a third-order 

Birch-Murnaghan isentrope (Eq. 1.9), with SK0  and /
0SK  derived from the elastic 

constants (e.g. Eq. 1.16) for self-consistency in the calculations.  The calculations for 

<110> diamond are shown in Fig. 1.14.  At the elastic strain corresponding to the HEL in 

each orientation, it is found that ><Δ 100
HELP =0.3 to -0.5 GPa, ><Δ 110

HELP =2.4 to 0.2 GPa, 

and ><Δ 111
HELP =0.9 to 0.5 GPa, where the range is due to the differences between Eulerian 

and Lagrangian finite strain predictions.  The magnitudes of these are relatively small 

given the typical uncertainties in stress here.  For <110> diamond, ><Δ 110
HELL =1.003, which 

is entirely negligible.  However, it is clear that despite using self-consistent elastic 

constants and strain-energy expansions to the same order in strain, the terms ΔP and ΔL 

are finite at all but infinitesimal strain conditions. 

For inelastic strain states behind the second shock, the characterization of ΔP and 

ΔL is less straightforward.  However, inasmuch as the HEL corresponds to the maximum 

deviatoric stresses possible in either an elastically-strained or inelastically-strained 

system (to first order), we conclude that the magnitudes of ΔP and ΔL predicted at the 

HEL should represent the maximum possible for inelastic strain-states as well.  This 

interpretation ignores the possibility of increasing yield strength with work-hardening or 

stress, which is often observed in metals [77].  However, for diamond this is not likely, as 
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the offset of inelastic-wave states from the hydrostatic response is never significantly 

larger than the offset observed at the HEL. 

It is worth noting that to accurately describe the finite-strain response of diamond 

under uniaxial strain conditions, fourth-order elastic models are needed (Chapter 2).  

However, fourth-order elastic constants are not known in their entirety, precluding the 

use of fourth-order models to fully predict ΔP and ΔL.  The effect of using only third-

order models is considered minor for the purposes of the present analysis. 

Elastic Yield Strength: 

The yield strength of diamond, determined by the point of yielding on the elastic 

Hugoniot (the HEL), is the point at which deformation occurs in the form of fracturing, 

plasticity or other inelastic processes.  This form of strength has been studied extensively 

for diamond [9-16].  For example, the quasi-static yield strength and failure limit of 

diamond has been of longstanding interest to researchers using diamond-anvil cell 

technology to study matter in static-compression experiments [12, 16, 78]. 

We evaluate the elastic yield strength of diamond by comparing the isentropic 

hydrostatic response predicted by Eq. 1.9 with the HEL in each orientation (Fig 1.12).  

This is reasonable since elastic loading should be nearly isentropic.  Under isentropic 

conditions, the thermal pressures are very small, and hence the difference between a 

uniaxial-strain isentropic state and a hydrostatic isentropic state can be attributed entirely 

to strength effects. 

Based on the present measurements, the elastic (compressive) yield strengths are 

><100
ELY =78 (± 16) GPa, ><110

ELY =78 (± 12) GPa, and ><111
ELY =60 (± 5) GPa.  The yield 

strengths for these orientations are a significant fraction of the ambient shear modulus of 
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553 GPa [8], as is common in brittle solids [21].  As with the HEL, the inferred shear 

strength is strongly orientation dependant, suggesting that it is not appropriate to define a 

single yield strength for diamond, and that the yield strength depends on the 

configuration of loading.  This anisotropy is to be expected because failure in diamond 

usually occurs preferentially along (111) planes, with each loading configuration 

providing a different combination of shear and normal stress to these planes.  There is no 

direct analog to uniaxial strain in most technological applications: thus, different yielding 

limits can be expected under the stress conditions achieved in other experiments. 

The critical shear stress along the (111) plane of diamond has been calculated 

from interatomic force models by Tyson [9] and Kelly et. al. [10], who found values of 

τmax=91.6 and τmax=121 GPa, respectively.  First-principles methods have also been used 

to determined the critical shear stress along the (111) plane; Chacham and Kleinman [13] 

found τmax=95 to 108 GPa for normal stresses from 0 to 50 GPa; Roundy and Cohen [14] 

predicted τmax=93 GPa.  Zhao et. al. [12], using first principals methods, found YEL~200 

GPa for compression in the <100> direction.  The yield strengths YEL thus obtained range 

from 180 to 240 GPa.  This is significantly larger than we have measured, which may not 

be surprising as real diamonds contain defects. 

The only other experimental determination of the shear strength of diamond was 

made by Eremets et. al. [16], who estimated YEL~120-140 GPa based on plastic 

deformation of diamond-anvil tips.  While somewhat larger than our values, the 

configuration of loading in that study differs significantly from that in our measurements.  

Specifically, the strength inferred for diamond tips subjected to > 100 GPa stresses over 

very small spatial regions (in this case, about 10 μm in diameter and a few μm thick), is 
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not necessarily the strength of diamond stressed over its bulk and over much larger 

spatial regions (as in the present study, where the stressed region is two orders of 

magnitude larger).  Scale-dependant strength of diamond has been observed previously, 

for example in the observed higher strength of small diamond grains and small loaded 

areas over large ones [8]. 

Finally, it is possible that third-order finite-uniaxial-strain models, used 

previously to constrain ΔP and ΔL, could be used to calculate directly the elastic shear 

strength of diamond by comparing the measured longitudinal stress at the HEL to the 

lateral stresses predicted by finite-strain models [11], as an alternative to the comparison 

to the hydrostat used earlier.  This gives yield strengths in accord with the strengths 

determined by Eq. 1.24 and 1.27. 

Inelastic Yield Strength: 

 For states that have been inelastically deformed beyond the elastic limit, the 

strength will be referred to as the inelastic yield strength, YIN.  This characterizes the 

resistance of inelastically deforming systems to total shear-stress relaxation.  In a simple 

elastic-plastic model, YIN=YEL for all deformation states; whereas YIN=0 in the elastic-

isotropic model.  Of course, YIN is likely to depend on strain rate, and hence the timescale 

of any given experiment. 

 In our measurements, the most useful regime of inelastic compression to examine 

is between 100 and 200 GPa, where our measurements are most precise (Fig. 1.13).  The 

most precise datum for each orientation is shown in Fig. 1.3, with the hydrostatic 

Hugoniot prediction, and the strength is taken from Eqs. 1.24 and 1.27.  At a stress P2 ~ 
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150 GPa, we find that ><100
INY = 0 to 72.3 GPa, ><110

INY = 0 to 47.6 GPa and ><111
INY =11.4 to 

90.1 GPa. 

It is reasonable to expect that the thermal pressure in the actual shocked state will 

be somewhat different from that on the hydrostatic Hugoniot at the same volume.  

However, given the relatively small magnitude of the thermal pressure on the hydrostat at 

the compressions considered above, we conclude that even relatively large differences in 

thermal pressure would not seriously affect our estimates of the inelastic yield strength.  

The range of uncertainty depends on the precision of our measurements, given by the 

confidence-bounding regions, the uncertainty in the hydrostatic Hugoniot, and the range 

of possible ΔP, including ΔP=0. 

The magnitude of the inelastic strength is made clearer by comparing the inelastic 

shear strengths INY  with those inferred from the HEL ELY .  For <111> compression, the 

strength seen in the deformation wave is 165 to 17% of the strength seen at the HEL, 

while for <110> the strength in the deformation wave is 72 to 0% of the strength seen at 

the HEL.   The <111> orientation thus displays a retention of strength in the inelastic 

response, while whereas the <110> orientation displays some loss of strength.  The data 

on the <100> orientation are too imprecise to constrain a loss or retention of strength. 

Given the uncertainties in strength measurement, it is plausible that all 

orientations retain finite strength under inelastic compression, though an ideal elastic-

plastic response is ruled out; it is also plausible that <100> and <110> display an ideal 

elastic-isotropic shock response whereas <111> exhibits an ideal elastic-plastic response.  

More precise measurements, as well as a closer examination of wave profiles, are needed 

to further understand the strength response of diamond in each orientation. 
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 The structure of the free surface wave profiles provides qualitative evidence for 

an anisotropic strength response under inelastic compression.  It has been noted that at P2 

~ 250 GPa, the free-surface reverberation due to the elastic precursor in <100> and 

<110> diamond shows evidence for interaction with a sharp, discontinuous second shock, 

while the <111> reverberation shows evidence of interaction with a broader second-

shock.  A large loss of strength in the inelastic wave for the <100> and <110> 

orientations would be consistent with shear banding, rapid stress relaxation at the shock 

front, and a sharp shock.  A retention of strength in the <111> orientation is compatible 

with a plastic deformation wave with a longer risetime.  Thus, it is likely that the form of 

the free-surface reverberation is related to the strength response – and mode of strength 

loss – in the second wave.  At lower stress (P2 ~ 150 GPa), the lack of a leading 

reverberation all wave profiles, even in orientations that show evidence for strength loss, 

could be related to the dispersion of the inelastic compression wave due to significantly 

lower shock speeds than bulk sound speeds (Fig. 1.10). 

 The datum from Kondo and Ahrens [7] that shows a distinct offset from the 

hydrostat (Fig 1.13) implies a shear strength INY =11.3 to 42.3 GPa.  The other datum is 

consistent with this result within its uncertainty.  As the direction of shock propagation in 

their experiments was close to the <111> direction, and since those experiments exhibited 

elastic precursors of similar amplitude to those observed in the present study in the 

<111> direction, we conclude that the finite inelastic yield strength in that experiment is 

consistent with our observations on the <111> orientation. 
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Figure 1.14. a) Finite Strain Calculation for <110> diamond.  Blue solid curves are the 
results of the Eulerian formalism and red dotted curves use a Lagrangian formalism.  The
hydrostatic isentrope, with the parameters set to be consistent with the second- and third-
order elastic constants, is show as a black solid line (PH).  The mean stress P computed 
for each formalism are shown with the same color as the principal components of stress
σ1, σ2, and σ3.  b) HPPP −=Δ  for the Lagrangian and Eulerian formalisms.  The HEL 
occurs at ~3.75 g/cc in density and ~80 GPa in stress σ1; this point does not lie on the 
predictions of σ1 due to inaccuracy in the third-order finite strain models. 
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Limit of the 2-wave structure in diamond: 

 

 The two-wave structure in diamond is observed to persist to several hundred GPa.  

It is of interest to consider at what final stress the elastic precursor will be overdriven and 

only a single, inelastic shock will form. 

We can estimate the absolute minimum overdrive stress on the Hugoniot by 

considering the minimum precursor amplitudes observed in this study.  That is, for an 

experiment of long duration (or ‘infinite-run’), the elastic precursor should decay to a 

minimum amplitude close to the HEL.  Overtake is defined to occur when the inelastic 

wave velocity D2  rises to equal D1.  Comparing the minimum D1 values measured in each 

orientation with the hydrostatic Hugoniot predictions for D2, we estimate the two-wave 

structure will persist to at least ~450 GPa for all orientations in an infinite-run experiment. 

This has implications for the previous measurements by Pavlovskii on the <100> 

orientation [23].  Our measurements on this orientation suggest that the three lowest-

stress experiments of Pavlovskii were likely to have contained elastic precursors that 

were apparently not observed.  This is reinforced by the fact that all three experiments 

exhibited shock velocities less than the ambient longitudinal sound speed in the <100> 

orientation.  The error incurred by not including the two-wave structure in the data 

reduction would have been substantial.  In appendix D, we consider the magnitude of 

these errors. 

It is clear from our measurements that shorter-duration experiments exhibit much 

faster precursors and that the two-wave structure can persist to at least several hundred 

GPa beyond the lower limit described above.  Given the high precursor shock velocities 
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predicted for CVD, nearly-<111> oriented polycrystalline diamond, overtake could occur 

as high as 1 TPa or more.  Beyond 600 GPa, it is possible that a two-wave structure will 

exist with a transparent elastic precursor followed by a strongly reflecting second wave in 

the molten carbon regime [6]. 
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Conclusion: 

 

The shock response of diamond is anisotropic for compression in three primary 

directions <100>, <110> and <111>.  For elastic compressions, the elastic limits vary 

with orientation, as do the elastic Hugoniots.  For inelastic compression, it is observed 

that strength is at least partially lost in the <110> orientation, whereas strength is at least 

partially retained in the <111> orientation.  The free-surface wave profiles of diamond 

also vary significantly with orientation, suggestive of a longer risetime of the inelastic 

wave in the <111> orientation and a different mode of inelastic deformation, compared to 

<100> and <110>. 

The different inelastic responses in each orientation could be related to the 

balance between the potential energy available for release in the inelastic wave and the 

tendency for thermal heterogeneities to dissipate due to the high lattice thermal 

conductivity of diamond.  Specifically, the <111> orientation has a smaller potential 

energy P1[V1 - VH(P1)] than the <110> and <100> orientations by virtue of its lower HEL 

and (initially) weak scaling of precursor amplitude with final stress (where VH(P1) is the 

hydrostatic Hugoniot volume at pressure P1).  Thus, the rate of potential-energy 

conversion to heat in the inelastic shock front could be reduced in the <111> orientation, 

and dissipation of thermal heterogeneities therefore more efficient, resulting in higher 

residual strength and a more plastic deformational response. 

Based on the present measurements, we find the observation of only single-wave 

structures in the work of Pavlovskii on <100> diamond [23] to be concerning.  Equation-

of-state models [6, 79] based on the original shock-wave data of Pavlovskii may be in 
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need of re-evaluation.  The 2-wave structure in diamond persists to final stresses of at 

least ~450 GPa, and possibly much higher depending on experimental timescales.  Given 

the strength effects present in diamond to these stresses, shock-wave data may not be 

easily integrated into equation-of-state models for carbon.  Several attempts have been 

made to simulate the shock Hugoniot of diamond using first-principles techniques [36, 

37]; however, quantitatively predicting dynamic strength effects remains a challenge for 

theory. 
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Chapter 2: 

Descriptions of elastic Hugoniots by finite strain 

theory.
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Abstract:  

Finite strain theory is developed for the specific case of uniaxial strain in spatial 

(Eulerian) and material (Lagrangian) strain, and these formulations and compared with 

uniaxial strain compression data from elastic shock-wave measurements.  Even at the 

relatively small uniaxial strain relevant to shock-wave measurements, a few percent in 

volume, it is found that these two treatments are not equivalent.  While the Eulerian 

treatment is preferred for representing hydrostatic compression measurements, we find 

that, at present, the available data on uniaxial strain do not warrant selection of one strain 

formulation of another.  Future high precision measurements may be able to distinguish 

whether one strain formulation is preferable for describing conditions of finite uniaxial 

strain. 

 

Introduction: 

 Shock compression initially generates a state of bulk uniaxial strain in a material.  

When the strength of the substance has not been exceeded, uniaxial strain is purely elastic.  

When strength is exceeded, bulk uniaxial strain is at least partially compensated by flow 

at microscopic to macroscopic scales that relaxes the anisotropic stress state toward one 

of isotropic or hydrostatic stress.  This chapter deals with the former case of purely elastic 

shock compression. 

 Here, the physical theories commonly used to treat finite strains are examined in 

the particular context of uniaxial strain.  These theoretical models will then be compared 

to existing elastic shock wave data on diamond, sapphire, and quartz. 
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With static compression techniques, purely uniaxial strain has been achieved in 

materials to axial stresses on the order of a GPa, before experimental difficulties in 

laterally confining samples and crystal failure prevent further examination of this ideal 

stress-strain configuration [80].  Shock compression, on the other hand, generates nearly 

ideal uniaxial-strain states with axial stresses up to the 100 GPa level, as failure and shear 

stress relaxation are inhibited on the timescale of the experiment by rapid loading and 

observation.  Given the large volumetric strains generated by this technique, on the order 

of several percent, a description of the stress-strain response of such systems must 

include the effects of finite strain, as opposed to the infinitesimal strain assumptions of 

linear elasticity. 

Although a Lagrangian finite-strain approach is often used to analyze 

compression measurements under large uniaxial strain [41, 44, 46, 57, 81, 82], it has been 

empirically established that an Eulerian finite-strain formulation is more consistent with 

measurements of large isotropic strains.  Specifically, the Eulerian approach has been 

found to be a better representation of experimental equations-of-state obtained from 

quasi-hydrostatic compression with devices such as the diamond-anvil cell, and shock 

compression of solids well beyond the elastic limit [65, 83-86].  Here we compare 

Eulerian and Lagrangian analyses of elastic shock-wave measurements to determine 

whether one formulation is preferred over the other when treating conditions of uniaxial 

strain. 

In an elastically isotropic material with strength, such as a glass [57], ideal 

uniaxial strain can be generated in any arbitrary direction.  In crystalline materials, ideal 

uniaxial strain is possible only in certain directions permitted by crystal symmetry to 
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contain pure longitudinal compression modes.  It has been shown that pure longitudinal 

nonlinear elastic modes exist along any rotational symmetry axis for any crystal 

symmetry class [43].  In other, nonspecific directions, modes may be quasi-longitudinal 

and quasi-shear, which significantly complicates measurement and theory.  Pure-

longitudinal mode directions are frequently studied in elastic shock experiments, and thus 

provide the an ideal and extensive dataset with which to examine different finite-strain 

formulations. 

 Some of the results described in this chapter have been covered in part by 

previous studies.  Of note is Nielson [70], the only previous researcher to have considered 

Eulerian finite strain for a system under uniaxial strain – coincidentally diamond, the 

subject of Chapter 1 of this thesis.  He noted that the Eulerian approach was superior to 

the Lagrangian in describing the stress-strain response under both isotropic and 

anisotropic strain conditions, in the sense that it described the results of his first-

principles calculations accurately over a larger compression range.  Now that 

experimental results are available from elastic shock waves in diamond, as presented in 

Chapter 1, we seek to revisit his observations. 

 

Finite strain theory of elasticity: 

 Following the approaches of Birch [65, 83], Thurston [82], Wallace [87], Fowles 

[46] and others, homogeneous uniaxial strain takes an initial (unstrained) point in the 

system located at aI=(a1, a2, a3) to a new position at xi=(x1, x2, x3) with subscripts 1, 2 and 

3 enumerating a Cartesian coordinate system.  The spatial (or Eulerian) coordinates xi 
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will be referenced with lowercase subscripts, and the material (or Lagrangian) 

coordinates aI will  be referenced with uppercase subscripts, after Wiener [88]. 

 The Jacobian, J, relating initial to final coordinates is 
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where ρ is strained density and ρ0 is the initial (unstrained) density. 

 The Lagrangian (material) and Eulerian (spatial) strains, ηIJ and εij, are defined as  
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respectively, where d is the Kronecker delta (δij=1 for i=j and δij=0 for i∫j).  At 

infinitesimal strain these definitions are quantitatively equivalent but diverge at finite 

strain.  

As described by Murnaghan [85] and Birch [83], the material is assumed to be 

hyperelastic such that the Cauchy stresses Tij associated with finite elastic strains can be 

written in terms of the internal strain energy φ as 
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where 
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For all strain configurations considered here, we postulate that 

jJiI
j

I

i

J

x
a

x
a δδ

∂
∂

=
∂
∂  (Eq. 2.6)

which will be verified later.  Hence, Eq. 2.5 becomes  
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where the terms )/(0 PQPQt ηφρ ∂∂= and )/(0 pqpqt εφρ ∂∂= are referred to as 

thermodynamic tensions [82].  It is assumed here that the stresses are entirely 

nondissipative, which is reasonable since elastic shock compression is typically assumed 

to be an isentropic, nondissipative process.  Thus, the thermodynamic tension tPQ is the 

second Piola-Kirchoff stress tensor [82]; tpq is unnamed. 

The stress Tij is positive in tension, and we convert to a stress measure σij that is 

positive in compression for comparison to shock experiments. 

ijij T−=σ  (Eq. 2.9)

It is assumed that the internal energy can be expanded as a power series in strain, 

either as 

( )

L+++

=−

PQMNKLIJIJKLMNPQMNKLIJIJKLMNKLIJIJKL CCC

SS

ηηηηηηηηη

φηφρ

24
1

6
1

2
1

)0,(),(0

 (Eq. 2.10.a)

or  



 75

( )

L+++

=−

pqmnklijijklmnpqmnklijijklmnklijijkl DDD

SS

εεεεεεεεε

φρεφρ

24
1

6
1

2
1

)0,(),( 00

 (Eq. 2.10.b)

where the constants C and D are isentropic elastic constants.  The first-order term is 

absent because the stress Tij is assumed to vanish in the unstrained reference state.  We 

also have the quantitative equivalence of the second-order constants, through 

lLkKjJiIijklIJKL DC δδδδ= , since as strain goes to zero, iJiIijIJ δδεη = and φ(η)=φ(ε).  

Higher-order constants however, differ between these strain formalisms. 

 In the following discussion, both the tensors for stress (Eq. 2.8) and strain (Eqs. 

2.2 and 2.3) are symmetric in line with their connection to the strain energy through Eq. 

10.  That is, the systems are considered at mechanical equilibrium, with Tij=Tji implying 

that there is no rotation of the unit cell during volumetric and shear strain.  This allows 

the use of Voigt notation, which takes symmetry into account by replacing indices ij or IJ 

as follows 

11 → 1,  22 → 2,  33 → 3,  (12,21) → 6,  (13,31) → 5, (23,32) → 4 (Eq. 2.11)

That is, tensor subscripts written as CIJKL with I,J,K,L=1,2,3 may be written instead as 

CMN in Voigt notation with M,N=1,2,3,4,5,6.  We will use Voigt notation from here on to 

refer to the indices of elastic constants; however, we will continue to use unabbreviated 

indices to refer to stresses and strains.  It is important to note that the typical summation 

conventions of tensors do not apply in Voigt notation, and the unabbreviated indices must 

be used for tensor analysis involving the elastic constants. 

 For a simple cubic system, such as diamond, there are 3 independent second-order 

elastic constants, which, as mentioned earlier, are equivalent for the Eulerian and 

Lagrangian cases, as in 
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There are 6 independent third-order constants [82], written here for the Lagrangian case 
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The Eulerian case is identical with the C’s replaced with D’s; however, as mentioned 

earlier the third-order constants are not equivalent between the two formulations.  All 

other constants not listed above vanish for cubic symmetry.  For crystals of lower 

symmetry there are a larger number of independent elastic constants.  For example simple 

trigonal crystals, such as quartz and sapphire, have 6 second-order constants and 14 third-

order constants [89-92].   Depending on the symmetry of the strain configuration, 

however, a smaller number of elastic constants may appear in the internal energy 

expansion Eq. 2.10. 

 Writing out the terms in Eq. 2.10.a to third-order in Lagrangian strain for a cubic 

crystal, we have 
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where the constants CMN and CMNO are the second- and third-order elastic constants in 

Voigt subscript notation, and strain terms are denoted with standard indices for the 

purposes of differentiation with respect to strain in determining tPQ and tpq.  It should be 

noted that the expansion in Eq. 2.14 differs from that found in an early work by Birch [83] 

on the subject of finite strain, due to his use of antiquated definitions of the third-order 

elastic constants [82, 87]. 

The second- and third-order elastic constants are often known from infinitesimal-

compression (e.g., wave-velocity) experiments on materials at ambient conditions and 

relatively low stresses using ultrasonic, Brillouin scattering, and Raman scattering 

techniques.  In general, these studies report third-order Lagrangian elastic constants, that 

is CMNO.  Third-order Eulerian elastic constants, Dmno, while not typically reported, can be 

related to the third-order Lagrangian constants for the crystal systems and strain 

configurations relevant to this study.  Birch [83] suggested an approach to accomplish 

this, in which the exact relationship between the Lagrangian and Eulerian constants could 

be obtained by equating the internal energy expansions of Eqs. 2.10.a and 2.10.b and 

comparing terms of identical order in strain.  Using this method, we have obtained 
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complete relationships between the third-order Lagrangian and Eulerian elastic constants 

for a cubic crystal (for details, see Appendix B) 
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For compression in certain high-symmetry directions of non-cubic crystals, such as a- 

and c-axis of trigonal crystals, we also have the relevant Eulerian elastic constants 

MMMMMmmm CCD += 12  (Eq. 2.16)

where m,M are Voigt pairs of tensor indices, with m=M=1 for the a-axis direction of a 

trigonal crystal and m=M=3 for the c-axis direction. 

Fourth-order elastic constants have been determined through shock-wave 

experiments [41, 46, 57], hydrostatic compression experiments [65], and first-principles 

calculations [70, 81], as well as other techniques [57].  Fourth-order elastic effects, 

however, are frequently not significant when describing moderate hydrostatic 

compressions of materials [86, 93], and it remains to be seen whether they are necessary 

for small uniaxial compressions. 

 

Differences between Lagrangian and Eulerian treatments of finite strain: 

Given an internal energy defined as an infinite power series in strain (Eq. 2.10) 

the treatments of finite strain through the Lagrangian and Eulerian approaches would be 

theoretically equivalent.  These treatments become inequivalent in practice when the 

internal energy is truncated at a certain order of strain.  Under hydrostatic stress, the 
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Eulerian treatment – in the form of the Birch-Murnaghan equation – emerges as the more 

powerful because of it’s empirical consistency with independent measurements of elastic 

moduli and static compression data when expanded to only third- or fourth-order in strain 

[65, 86, 93].  Lagrangian descriptions to equivalent orders of strain are found to be 

empirically inconsistent with the measurements.  While this inconsistency can be 

resolved by expanding the internal energy to higher orders in the case of Lagrangian 

strain [65], the relative simplicity of the Eulerian description has led to it being the 

preferred method for describing and interpreting finite-strain data under hydrostatic 

conditions.  Other successful equations of state, such as the Vinet model, closely match 

the Eulerian finite-strain model [86].  The underlying physical explanation for the 

differences between Lagrangian and Eulerian strain formulations has been discussed 

elsewhere [85, 86]. 

For strongly anisotropic stress and strain conditions, the relative value of these 

finite strain approaches is not clear.  For a system under uniaxial strain – which is, in 

ideal circumstances, the condition of strain and stress applied by elastic shock waves – 

the discrepancies between the Lagrangian and Eulerian approaches have only been 

occasionally discussed [70], and in most analyses of shock data the Lagrangian approach 

has been used without consideration of alternative strain formulations [41, 44, 46, 57, 81, 

82].  There could be several reasons for this.  Firstly, it may be tacitly assumed that the 

elastic uniaxial strains possible in materials are so small – on the order of several % in 

volume – that the Lagrangian and Eulerian treatments are essentially identical.  Secondly, 

it has been suggested that the Eulerian formalism is valid only in certain special cases, 

such as that of an isotropic medium under hydrostatic stress, where the Eulerian strain 
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definition satisfies the condition of frame-indifference [94-98].  A rank two tensor 

quantity G, such as material strain (Eqs. 2.2 and 2.3), is considered to be frame-

indifferent if it transforms according to 

TQGQG ⋅⋅=∗  (Eq. 2.17)

where Q is any arbitrary orthogonal transformation tensor with a transpose QT [98].  

Since the Eulerian strain tensor Eq. 2.3 does not, in general, satisfy this requirement [94-

98], and since to these author’s knowledge only the special case of hydrostatic stress has 

been shown to lead to a frame-indifferent Eulerian strain, it would seem possible that 

Eulerian strain is does not satisfy frame-indifference under anisotropic strain conditions.

 However, it is found that neither of the above concerns are legitimate; the 

differences between the Lagrangian and Eulerian finite-strain formalisms are 

considerable even at strains of a few percent, and the Eulerian strain tensor is found to 

conform to frame-indifference under uniaxial strain as well as under isotropic strain, as 

will be discussed. 

Given that third-order Eulerian elasticity is usually sufficient to describe 

hydrostatic compression to strains of many tens of percent, it might be surprising to find 

that fourth-order (or higher) elasticity is necessary for uniaxial strain to only a few 

percent.  Previous shock-wave and first-principles studies [41, 46, 57, 70, 81] have 

generally concluded that indeed, higher-order elasticity, represented by a fourth-order 

elastic constant, is necessary to fit the uniaxial stress-strain response – however, most of 

these studies only evaluated the fourth-order constants in terms of Lagrangian strain.  It 

stands to reason, in analogy with the findings under isotropic strain conditions, that an 

Eulerian approach to uniaxial strain may provide a simpler description of the uniaxial 
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stress-strain response – perhaps limited to only third-order in strain.  However, as will be 

demonstrated here, the need for higher-order elasticity in uniaxial strain is robust, 

regardless of the strain formulation used. 

 

Finite uniaxial strain: 

In diamond, a cubic crystal, the only crystallographic directions allowed by 

symmetry to propagate pure-longitudinal infinitesimal strain modes are <100>, <110> 

and <111> [42].  In trigonal crystals, such as quartz and sapphire, symmetry dictates that 

pure infinitesimal strain modes can only exist in the a- and c-axis directions [46, 57].  It 

was found in incremental finite strain models that these directions, corresponding to axes 

of rotational symmetry in the crystal, are also able to sustain purely longitudinal shock 

waves for an ideal elastic material [43]. 

In pure longitudinal mode directions, infinitesimal strain is represented by sound 

wave propagation, and finite strain associated with elastic shock wave compression.   As 

progressively weaker shock waves are considered, the sound-wave velocities serve as an 

important reference point at zero strain.  Such sound waves are related to the second-

order elastic constants of a material [42].  For the <100> direction in cubic crystals, and 

a- and c-axis compression of trigonal crystals, the longitudinal sound velocity Vl is 

0ρ
MM

l
CV =  (Eq. 2.18.a)

where M is a Voigt index and ρ0 is the ambient density.  The index M=1 for a cubic 

crystal strained in the <100> orientation and for a trigonal crystal strained along the a-

axis, while M=3 for a trigonal crystal strained along the c-axis. 

 For <110> strain in a cubic system, the longitudinal sound velocity is 
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=  (Eq. 2.18.b)

while for <111> strain we have 

ρ3
42 441211 CCCVl

++
=  (Eq. 2.18.c)

For elastic shock waves, with shock speed D and particle speed u, we expect that D(u=0) 

= Vl. 

 As the sound velocity in the <100> direction of a cubic crystal is similar in form 

to the sound velocity along the high symmetry axes of trigonal crystals, we will also find 

that the constitutive relations developed for finite uniaxial strain in the cubic <100> 

direction and along the high-symmetry axes of trigonal crystals are identical in form.  

Therefore, by developing constitutive relations for the <100>, <110> and <111> cubic 

orientations, we will have a suite of formulations that will apply to many of the solids 

studied to date.   Development of these uniaxial strain constitutive relations has been 

partially completed in previous studies using Lagrangian [44, 46, 70] and Eulerian [70] 

formulations. 

 The finite strains associated with uniaxial strain in cubic directions <100>, <110>, 

and <111> can be written as 
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 (Eq. 2.19.a)

for Lagrangian strain and 
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for Eulerian strain.  The validity of these definitions will be addressed later. 

 Defining a primed coordinate system aligned with the axis of uniaxial 

compression, we have 
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and  
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for the Lagrangian and Eulerian strain. Quantities in the primed and unprimed 

coordinates are related by a coordinate transformation of the form 

/
klljkiij KRRK =  (Eq. 2.21)

with the inverse transformation 

kljlikij KRRK =/  (Eq. 2.22)

where Kij is a second-rank tensor, such as the strain ηIJ and εij, the Cauchy stress Tij, or 

the thermodynamic stresses tIJ and tij, and where Rij is a rotation matrix. 

 For <100> uniaxial strain, the crystallographically-based coordinate system is 

already aligned with the compression axis, and the transformation matrix to the primed 

system is Rij=δij, that is 
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For <110> and <111> strains, the transformation matrices are  
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 The reason for using the primed coordinate system is that with respect to this 

system the stress variables are directly related to the longitudinal shock stress, and the 

definition of strain is particularly straightforward.  The relationship between the initial aI
/ 

and final xi
/ coordinates can be written simply as 
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 (Eq. 2.24)

where γ=ρ0/ρ=J by Eq. 2.1.  With this relation, we can write the strains in Eq. 2.20 as 
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with all other /
IJη and /

ijε  equal to zero. 
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By applying the rotations in Eq. 2.21 and 2.23, we obtain the strain parameters 

referenced to the real (crystallographic) coordinate system.  For <100> strain, the primed 

and unprimed terms are identical, that is 
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For <110> strain, coordinate rotation gives 
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and for <111> strain, coordinate rotation gives 
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These are consistent with the initial definition of strain in Eq. 2.19. 

However, in light of the earlier caveat that in general, Eulerian strain formalisms 

are not frame-independent, it stands to reason that the coordinate transformation used 

above, Eq. 2.21 – which is equivalent to the condition for frame indifference Eq. 2.17 – 

might not actually be valid in the case of Eulerian strain.  Thus, we seek to verify the 

Eulerian parts of Eqs. 2.28 and 2.29 by a different approach.  We first assume that the 

rotation Eq. 2.21 is valid for Lagrangian strain, as is expected due to general frame-

indifference of the Lagrangian strain tensor.  We then obtain a set of relationships 

between the coordinates xi and aI in the crystallographic reference frame, similar to Eq. 

2.24, by taking the Lagrangian components of Eqs. 2.28 and 2.29, the strain definitions 
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Eqs. 2.2 and 2.25, and algebraically solving for the relationship between xi and aI that 

yields a state of uniaxial strain. 

This relationship, for <100> strain, is simply Eq. 2.24 with the primes removed.  

The results for <110> and <111> uniaxial compression are 
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respectively.  As before, γ=ρ0/ρ=J.  Now, from the xi(aI) in Eqs. 2.30 and 2.31, the εij (Eq. 

2.3) can be determined in the crystallographic coordinates directly, leading to the 

Eulerian parts of Eqs. 2.28 and 2.29 that were originally obtained by coordinate 

transformation of the Eulerian strain.  Thus, under uniaxial strain, the Eulerian strain 

tensor is legitimately transformed (in this case rotated) by Eq. 2.21, and thus appears to 

satisfy the condition of material frame indifference given by Eq. 2.17.  Additional 

transformations using Eq. 2.17, such as rotation and translation, will also be valid due to 

homogeneity of strain. 

The xi(aI) relations in Eqs. 2.24, 2.30 and 2.31 also satisfy Eq. 2.6, which was 

originally presented without proof. 

Using the definitions of internal energy given in Eq. 2.10, the stresses /
ijσ for the 

<100> orientation, where the primed and crystallographic coordinate systems are 

identical, are obtained by considering Eqs. 2.8, 2.9, 2.10, 2.24, and 2.27: 
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for the Lagrangian approach and 
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for the Eulerian.  All shear stresses vanish and the lateral stresses are equal due to the 

assumed alignment of the uniaxial compression with the primed (shock) coordinate frame.  

There are two ways to derive the stresses /
ijσ for the <110> and <111> uniaxial strain 

orientations.  One is to determine the Cauchy stress tensor Tij in the crystallographic 

reference frame using Eqs. 2.8 and 2.10, and the xi(aI) in Eqs. 2.30 and 2.31, after which 

Tij can be rotated to the primed frame with Eq. 2.22.  The other is to determine the 

thermodynamic stress tensors tIJ and tij in the crystallographic reference frame from Eq. 

2.10, rotate the thermodynamic stress into the primed frame with Eq. 2.22, and then using 

the xi(aI) of Eq. 2.24, calculate /
ijT  from the /

IJt and /
ijt with Eq. 2.8.  Both methods give 

identical results; the second approach is outlined by Boteler [44]. 

 That is, for <110> 
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and 
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The lateral stresses are not equal for <110> strain, and the rotation matrix chosen for this 

orientation (2.23.b) has aligned the primed axes with the directions of principal stress – 

that is, all lateral shear stresses vanish. 

 Correspondingly, for <111> we have 
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and lateral stresses are isotropic as in the <100> case. 

For high-symmetry uniaxial strain in the <100> direction of a cubic crystal (e.g. 

Eq. 2.32) and, for example, in the a- and c-axis directions of trigonal crystals, the fourth-

order term of the longitudinal stress σL ( /
11σ  in the case of <100> cubic strain) contains a 

single elastic constant, CMMMM or Dmmmm, as in 
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and 
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where M and m are Voigt pairs of indices denoting a high-symmetry direction, such as 

M,m=1 for the trigonal a-axis and cubic <100> direction, and M,m=3 for the trigonal c-

axis direction.  Some effort has gone into measurement of CMMMM from shock data for 

certain high symmetry directions in crystals [41, 46, 57]. 

 Eqs. 2.33 and 2.34 for <110> and <111> uniaxial strain, however, become 

complicated when extended to fourth-order, and shock experiments in these orientations 

(which usually measure only /
11σ ) can only constrain sums of fourth-order constants.  

Consequently we cannot expect to resolve most of the individual fourth-order elastic 

constants from shock data, and since independent measurements of fourth-order elastic 

constants are generally not available, we will not concern ourselves with the combination 

of constants appearing in the fourth-order terms of Eqs. 2.33 and 2.34, and consider only 

a single fourth-order constant to represent that combination in our analysis of <110> and 

<111> cubic shock data. 

 

Comparison to elastic shock wave data: 

To relate the uniaxial strain constitutive relations to shock wave systems, we 

consider the Hugoniot equations (Chapter 1) and rewrite them as 

( )

( )ρ
ρ

ρ
ρ

ρρ

ρ

σσ

0

0

1

1

00

0

L
/

11

−==

−
=

==

P
D

Pu

PD

P

 
(Eq. 2.36)



 90

Thus, for a given change in density ρ/ρ0 in uniaxial strain, the shock stress P, shock speed 

D, and particle speed u are defined. 

 It is expected that as the infinitesimal strain limit (u=0, ρ/ρ0=1) is approached, D 

will converge with the ambient longitudinal sound speeds, given by Eqs. 2.18. 

The elastic Hugoniot can be determined by data from elastic shock waves with 

stresses below the Hugoniot elastic limit (HEL), and by elastic precursor shocks forming 

at or near the HEL and ahead of a plastic deformation wave [41].  In this manner, the 

entire elastic compression range possible for a material can be explored experimentally, 

inasmuch as the HEL represents a fundamental limit on purely elastic response.  Several 

elastic Hugoniot models will be considered: 

1) Third-order finite uniaxial strain models with the second- and third-order elastic 

constants taken from the literature, using Lagrangian (“L3 lit”), and Eulerian (“E3 

lit”) formulations. 

2) Third-order models with second-order constants from the literature, and third-

order terms fit to the data.  Often in fitting third-order terms, only a sum of elastic 

constants is fit; individual constants may be undetermined.  These models are 

labeled as “L3 fit” and “E3 fit” for Lagrangian and Eulerian formulations, 

respectively. 

3) Fourth-order models with second- and third-order constants taken from the 

literature, and the fourth-order term fit to the data, are labeled “L4” and “E4” for 

Lagrangian and Eulerian formulations, respectively. 

4) Linear D-u fits to the elastic shock data, centered on the longitudinal sound speeds.   
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Given the typical precision of the shock measurements, it is usually not realistic to fit for 

more than one finite-strain term, third- or fourth-order, at a time; we do not examine this 

possibility here.  Second-order finite-strain and linear-elastic models are not useful for 

comparison to the measurements for reasons that will be discussed. 

 

Materials: 

Sapphire 

The finite strain response of single-crystal sapphire has been considered 

previously in [18, 57], and elastic shock data are available from [18, 33, 99, 100].  Both 

a- and c-crystallographic axes display nearly identical elastic responses [57] (these 

directions are also referred to as the x-axis or 90° orientation and the z-axis or the 0° 

orientation, respectively).  For the current analysis of sapphire, we take the second-order 

elastic constants from [90] and the third-order constants from [89] (Lagrangian) and Eq. 

2.16 (Eulerian).  All are based on ultrasonic measurements under pressure (some of the 

published values have changed due to adopting current crystallographic conventions 

[101], but this does not affect C11, C111, D111, C33, C333, and D333, relevant to the present 

study). 

The data and finite strain theories are shown in Fig. 2.1.  For this material only 

third-order finite strain predictions, based on the literature elastic constants, are needed, 

as these agree satisfactorily with the data for both the Lagrangian and Eulerian 

approaches.  Linear D-u fits also represent the data well.  There is no convincing reason 

to examine the possibility of a fourth-order elastic contribution, given the scatter in the 
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measurements; this contrasts with previous reports of fourth-order elastic effects in 

sapphire by Graham [57]. 

Quartz 

 The finite strain response of quartz has been considered previously in [41, 46, 81], 

with elastic shock data available from [41, 45, 46]; as a trigonal crystal, the orientations 

of quartz can be specified as described for sapphire, though recognizing that quartz is 

enantiomorphic.  The second-order elastic constants are from [92] and the third-order 

constants are taken from [91] (Lagrangian) and Eq. 2.16 (Eulerian); they are based on 

ultrasonic measurements. 

 For quartz, it appears that fourth-order elasticity is needed to fit the data using 

both Eulerian and Lagrangian formalisms (Fig. 2.2).  The most useful orientation here is 

the c-axis orientation, for which high precision measurements of the low-stress elastic 

Hugoniot exist [41].  In this orientation, third-order elasticity, whether using the 

ultrasonically-determined or fitted C333 and D333 fail to describe the elastic shock data.  

Similarly, a linear fit fails to represent the data.  Thus, only fourth-order elasticity can 

reasonably match the measurements in this orientation.  Both Lagrangian and Eulerian 

fourth-order fits match the nonlinearity of the low-stress, high-precision data [41], and 

while the high-stress extrapolation of these theories differ, the data are not precise enough 

to favor one over the other. 

Similarly, for the a-axis orientation, third-order fits using the known constants 

C111 and D111 fail to reproduce the data, and fourth-order elasticity must be invoked.  

High-precision experiments on the a-axis elastic Hugoniot, particularly at low stresses 
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where the deviations between different models are substantial, could help discriminate 

between Eulerian and Lagrangian analyses. 

Diamond 

 For diamond, the finite strain response under uniaxial compression was 

considered previously [44] to predict the elastic Hugoniots of diamond [44, 102, 103].  

However, no elastic Hugoniot measurements existed at that time to confirm these 

predictions.  New elastic Hugoniot data in the form of elastic precursor measurements 

have been presented in Chapter 1 for the pure-longitudinal mode directions of diamond, 

<100>, <110> and <111>.  With this data, we may reconsider how finite strain theory 

may be used to describe these elastic Hugoniots. 

 For diamond, the second-order elastic constants were determined most accurately 

by Brillouin scattering in [49].  Third-order Lagrangian elastic constants were determined 

by analysis of Raman data in [58, 104] and we use the presumably more accurate values 

of [58] as recommended by Boteler [44, 103].  Third-order Eulerian constants are 

determined through Eq. 2.15. 

As third-order constants were determined by a relatively nonstandard technique 

for diamond, we consider their consistency with other datasets, specifically, 

measurements of the isothermal hydrostatic response of diamond measured with static 

compression [59, 60].  This analysis can be found in Chapter 1.  It was concluded that the 

third-order isentropic elastic constants of [58], yielding a bulk modulus pressure 

derivative of PK S ∂∂ /0 =4.52, are inconsistent with PK S ∂∂ /0  suggested by static 

compression measurements of 3.93±.27.  Thus, it is expected that there will be some 

improvement on the individual third-order isentropic elastic constants in the future.  
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Nonetheless, the relatively close agreement of these determinations suggests that use of 

the existing constants will be sufficient for the present study. 

In the case of shock compression in the <100> and <111> directions of diamond, 

it appears that as for quartz, fourth-order elasticity is needed to represent the data when 

third-order constants are presumed known (Fig. 2.3).  The same is true for the <110> data 

in the Eulerian formalism, but for the Lagrangian the third-order description is sufficient.  

Only in the case of <100> compression does the fourth-order finite-strain theory 

constrain directly a fourth-order elastic constant, yielding C1111≈380 TPa and D1111≈170 

TPa for diamond (Fig.  2.3.a). 

In addition to the models based on literature constants, it is also seen that linear 

D-u fits and third-order finite strain models with fitted third-order parameters represent 

the shock data reasonably well.  Models diverge significantly at low stress, and thus 

accurate shock data from this regime could further discriminate between the them. 

A number of first-principles and molecular dynamics computations have been 

conducted that describe diamond under uniaxial strain conditions [70, 74, 75, 81, 105, 

106].   The results of some of these simulations are plotted in Fig. 2.3.  The early first 

principles calculations of Nielson [70] for uniaxial strain in the <100> and <110> 

directions were obtained directly from the author [107] for maximal precision, which is 

needed to accurately convert the data into D-u space; Nielson’s data for <110> was 

transformed into shock coordinates with Eq. 2.22.  The u=0 velocity limits were obtained 

from Nielson’s computed second-order elastic constants.  It is interesting to note that 

modern calculations of uniaxial strain in the <100> direction [81] are largely similar to 
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those of Nielson, and that neither appear to accurately represent the data.  Nielson’s 

results for strain in <110>, however do appear to agree with measurements. 

Also shown are recent results from McLaughlin et. al. [74] which simulate 

through molecular dynamics the conditions of elastic shock waves propagating in the 

<110> direction.  Interestingly, those results predict elastic shock waves that exhibit 

constant wave velocity with increasing stress and particle velocity.  This is consistent 

with our measurements for the <110> orientation and the predictions of finite strain 

models, which show a weak or even negative scaling of shock speed with particle speed. 

 

Linear elasticity: 

 For very small strain, it might be expected that the constitutive relations obtained 

here will converge with the infinitesimal or linear theory of elasticity, as represented by 

Hooke’s Law [98] 

klijklij C θσ =  (Eq. 2.37)

where θkl is the classical infinitesimal strain tensor, defined as the change in length of a 

line Δl divided by the length of the line l.  For uniaxial compression, the longitudinal 

stress in the primed frame can be denoted as /
11σ and the strain as /θ , in the manner 

discussed for finite-strain models.  The linear elastic constitutive relations implied by Eq. 

2.37 can be represented by two limiting strain definitions, which are equivalent at 

infinitesimal strain but diverge at large strain: /θ =(ρ/ρ0-1) and /θ =(1-ρ0/ρ).  The latter of 

these is equivalent to the definition of a linear medium, after Thurston [108]. 

At infinitesimal strain, the finite strain tensors εij and ηIJ reduce to the classical 

strain tensor θij, and it is plausible that the longitudinal stresses in Lagrangian and 
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Eulerian treatments (e.g. )( //
11 ησ  and )( //

11 εσ  in Eqs. 2.32-2.34) will converge with the 

linear infinitesimal strain relation 2.37 and with each other.  It may be further postulated 

that at infinitesimal strain, the higher-order terms of the finite strain relations will be 

negligible; that is, these relations can be represented reliably at small strain by 

eliminating all higher-order terms in the expansion, leaving only the second-order term. 

However, the above is not the case for several reasons, which are illustrated 

graphically in Fig 2.4, using the example of <111> uniaxial strain in diamond.  It can be 

seen in this representative case that the various constitutive relations do not exhibit a 

unique linear elastic dependence at smalls strain to which all relations converge.  

Evidently, subtle differences in the strain definitions ε, η, and θ, are enough to perturb 

the predicted shock response even at infinitesimal strains.  Additionally, the leading 

factors (ρ0/ρ) and (ρ/ρ0)3 in the Lagrangian and Eulerian descriptions of /
11σ , respectively,  

are significant at all but zero strain and contribute to the divergence of these formulations 

from each other and from the linear relations, which contain no prefactors.  Finally, as 

evidenced by the third-order models in Fig. 2.4, higher-order terms are never negligible 

in the finite strain expansions, as they contribute significantly to the constitutive response 

even for small strain. 

Furthermore, it is clear from Fig. 2.4 that the only way for Eulerian and 

Lagrangian finite-strain formulations to converge at any compression is when expanded 

to at least the third order in strain. 
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Discussion: 

 In studying the results of Figs. 2.1, 2.2, and 2.3 for sapphire, quartz, and diamond, 

it appears that, in general, fourth-order elastic effects must be accounted for in 

descriptions of uniaxial strain elastic shock data, regardless of whether a Lagrangian or 

Eulerian strain formalism is used.  This conclusion remains convincing even if 

consistency with independent measurements of the third-order elastic constants is not 

required, as is illustrated by the case of c-cut quartz.  The main features of this conclusion 

are as follows: 

i) Third-order finite strain fits tend to be unrealistic, regardless of whether third-

order elastic parameters are taken from the literature, or whether these 

parameters are fit to the data.  The failure of third-order models, using 

literature third-order elastic constants, is visible in both quartz and diamond 

for most crystallographic orientations.  The failure of third-order models with 

fitted third-order constants is most apparent in quartz; in c-cut quartz, where 

the data is of the highest precision and extends over the entire elastic 

compression range, the E3 fit and L3 fit models clearly fail to represent the 

data; in a-cut quartz, the E3 fit model has an unphysical high stress 

extrapolation, with a strongly negative slope in D-u space.  In fact, most third-

order models exhibit negative D-u and P-ρ slopes at high u and ρ, beyond the 

graph limits in Figs. 2.1-2.3 and 2.4.  The unphysical high-pressure behavior 

of Lagrangian third-order models was observed previously [78, 109, 110], 

though the interpretation presented by those studies – that this behavior is 

related to fundamental material strength – is not well supported. 
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ii) Fourth-order finite strain fits, overall, seem to provide the best representation 

of shock data.  In most cases, the fourth-order fits are similar in both the 

Lagrangian and Eulerian formalisms and both represent the data equally well.  

The most stringent test at present is c-cut quartz, which features the highest 

precision low-stress data, and clearly shows that both Lagrangian and Eulerian 

fourth-order descriptions fitting the curvature of the low stress data, as well as 

the more scattered high-stress results. 

iii) The differences between Eulerian and Lagrangian models – whether third- or 

fourth-order, are often substantial, such as in the case of the fourth-order 

models for a-cut quartz.  Thus, despite the small strains of only a few percent 

being considered here, it is not appropriate to treat the Lagrangian and 

Eulerian models as equivalent.  It is possible that future high-precision 

measurements of elastic Hugoniots will serve to discriminate between these 

strain formalisms, but there is no convincing reason to select one over the 

other based on the uniaxial-strain data analyzed here. 

iv) A possible exception to the viability of fourth-order elastic models can be 

found in <110> diamond, where the best-fit Eulerian (L4) model shows a 

negative trend in shock velocity with increasing particle velocity.  However, 

as suggested by the measurements (Chapter 1) and by molecular dynamics 

calculations [74], a weak or flat scaling of shock speed with stress in this 

orientation may not be entirely unreasonable.  Furthermore, as the elastic 

constants of diamond may be improved on in the future, this observation is 

tentative. 
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Given that third-order Eulerian elasticity is usually sufficient to describe hydrostatic 

compression to strains of many tens of percent, it may be surprising that fourth-order 

elasticity is necessary for uniaxial strains to only a few percent.  

 The appearance of higher-order effects in uniaxial strain could result from 

fundamental differences in the behavior of matter under finite uniaxial strain and finite 

hydrostatic strain.  First, during hydrostatic compression, crystal structures often remain 

constant on compression or experience relatively small changes in unit cell parameters, 

provided there is no phase transition, whereas uniaxial strain forces the crystal structure 

to undergo a change in symmetry on compression.  For example, a cubic crystal under 

uniaxial strain becomes tetragonal when strained in the <100> direction, orthorhombic 

under strain in the <110> direction, and trigonal under strain in the <111> direction.  

Secondly, under anisotropic stress and strain, the stability of different crystal structures 

could be altered from that known for hydrostatic conditions, and anisotropic-strain-

specific phase transitions are possible [111-116].  Thus, elastic descriptions based on the 

ambient crystal structure may fail to describe the material at finite uniaxial strain, which 

could manifest as an appearance of strong higher-order effects in finite strain descriptions. 

 Finally, it is possible that the combination of elastic constants, including fourth-

order constants, that define the second pressure derivative of the bulk modulus in 

hydrostatic compression, 22 / PK ∂∂  [65], are such that the effect of fourth-order elasticity 

is minor in hydrostatic strain relative to uniaxial strain, in which the equivalent fourth-

order elastic terms can be quantitatively more significant.  This is certainly the case with 

the relative magnitude of the third-order elastic contribution in hydrostatic and uniaxial 

strain, as shown in Fig. 2.5.  That is, at a given volume compression, the difference 
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between linear elastic models and nonlinear elastic, third-order models are sometimes 

significantly larger under uniaxial strain compared to hydrostatic strain.  It is possible that 

the same may be true for the differences between third- and fourth-order terms.  This 

interpretation is consistent with certain orientations of uniaxial strain (e.g. diamond 

<110>) showing very little fourth-order contribution whereas others (e.g. diamond <100> 

and <111>) show significant contributions.  However, without a complete set of fourth-

order constants, it is not possible to evaluate this possibility quantitatively. 

The necessity of including fourth-order elasticity in treatments of uniaxial strain 

complicates the application of finite strain models to define the full stress state of shock 

compressed systems.  That is, while empirical fourth-order models can describe the 

elastic Hugoniots of highly nonlinear elastic materials, they are unable to predict lateral 

stresses, as the required fourth-order constants – or the appropriate combinations thereof 

– are not measured or known independently. 

 

Conclusion 

In contrast to hydrostatic compression experiments, where Eulerian third-order 

finite strain models are often sufficient to represent compression data to many tens of 

percent in strain, it appears that third-order elasticity – whether in the Eulerian or 

Lagrangian approach – is insufficient to regularly describe uniaxial strain compression 

data to even a few percent in strain.  By extending the Eulerian and Lagrangian finite-

strain models to fourth order, both finite strain approaches can agree satisfactorily with 

existing measurements.  Despite the relatively small strains discussed here, the 

quantitative differences between Lagrangian and Eulerian approaches are significant and 
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independent elasticity measurements combined with high-precision elastic shock-wave 

experiments are needed to further discriminate between these models. 
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Figure 2.1. Sapphire elastic shock data and finite strain theories for uniaxial strain in (a)
a-axis and (b) c-axis directions.  Shock data is from [18] (upward triangles), [100]
(downward triangles), [99] (squares), and [33] (diamonds).   Large circles are ambient 
sound speeds taken from the elastic constants [90] and Eq. 2.18.a.  Black dashed line is a 
Lagrangian third-order strain model (L3 lit) and the grey dashed line is an Eulerian third-
order strain model (E3 lit), with the third-order elastic constants are taken from the 
literature [89] and Eq. 2.16.  Red line is a linear fit to the data.  Third-order elasticity is 
sufficient to describe this material, given the precision of the measurements. 
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Figure 2.2.  Quartz elastic shock data and finite strain theories for uniaxial strain in (a) a-
axis and (b) c-axis directions.  Shock data is from [46] (upward triangles), [45]
(downward triangles), and [41] (squares).  Large circles are ambient sound speeds taken
from the elastic constants [92] and Eq. 2.18.a.  Black lines are Lagrangian (L) strain
models, grey lines are Eulerian (E) models, red line is a linear fit.  Dashed lines (L3 lit,
E3 lit) are third-order models with the elastic constants taken from the literature [91] and 
Eq. 2.16.  Dashed-dotted lines (L3 fit ,E3 fit) are third-order models with the third-order 
parameter fit to the data.  Solid lines (L4, E4) are fourth-order models with the fourth-
order constant fit to the data [41, 46] and the third-order constants taken from the 
literature.  For c-cut quartz, the data of [41] is very precise, and only fourth-order models 
can reasonably agree with this data and the higher stress, less precise measurements. 
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Figure 2.3.  (caption on next page) 
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Figure 2.3. Diamond elastic shock data and finite strain theories for uniaxial strain in (a)
<100>, (b) <110> and (c) <111> directions.  Data is from Chapter 1.  Large circles are 
ambient sound speeds taken from elastic constants [49] and Eq. 2.18.  For finite strain 
theories, line types and notations are the same as in Fig. 2.2.  Third-order literature elastic 
constants (L3 lit, E3 lit, L4, E4) are taken from ref. [58] and Eq. 2.15.  Blue lines are 
computational results of Nielson [70, 107] (solid line and blue squares), Zhao [12]
(dashed line), and McLaughlin [74] (dotted line).  In <100> and <111> diamond, higher-
order elastic effects are needed to accurately represent the data, assuming the literature
third-order constants are accurate.  In <110> diamond, a third-order description with the 
literature third-order elastic constants is possible in the Lagrangian theory. 
Computational results are in reasonably agreement with the data in the case of <110>
strain but diverge significantly in the case of <100> strain. 
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Figure 2.4.   Comparison of finite strain theories to linear strain, in the representative 
case of <111> uniaxial strain in diamond.  Linear strain expansions are given by Hooke’s
law with two extreme definitions of the strain (solid and dashed-dotted grey lines); the 
solid line is the definition of a linear medium [108].  The dotted and dashed grey lines are 
the Eulerian (E2) and Lagrangian (L2) models truncated to second order in strain.  The 
“E3 lit” and “L3 lit” models are the same as in Fig. 2.3.c. 
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Figure 2.5.  Comparison of linear elastic to third-order finite strain models for diamond. 
Solid lines are linear elastic predictions; solid black line is linear elastic hydrostatic
model from the definition of the bulk modulus )/( ρρ ∂∂= PK ; solid red, green, and 
purple lines are linear elastic uniaxial strain models after Thurston [108], for <111>, 
<110> and <100>, respectively.  Dashed lines are Eulerian third-order models; dotted 
lines are Lagrangian models.  The third-order Eulerian model for hydrostatic compression 
is the Birch-Murnaghan equation (Chapter 1); the equivalent third-order Lagrangian 
model is not shown. 
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Chapter 3: 

Optical properties of silica through the shock melting 

transition. 
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Abstract: 

Under shock compression, α-quartz is found to transition from transparent to 

opaque and reflecting at a pressure of ~80 GPa on the Hugoniot.  The VISAR index of 

refraction correction for transparent quartz at high pressure is found to be 1.16 (± 0.04).  

This is consistent with the expected high pressure index of refraction of silica.  Quartz is 

thus found to be a good reference material for shock experiments using interferometric 

techniques to measure velocity, both below 80 GPa by virtue of its optical transparency 

and above 80 GPa by virtue of the reflectivity of the shock front. 

 

Introduction: 

 The high pressure behavior of SiO2 has long been of interest in the field of high-

pressure physics and planetary science, due to the variability of its molecular structure 

under different pressure and temperature conditions and its ubiquity in planetary settings. 

In shock research, silica has long been used as an optical window, at low 

pressures where silica is transparent [33, 41] and shock compression is elastic; and also at 

high pressures, where silica has been shocked into the molten and electronically 

conducting (metallic) regime [39, 40].  However, the transition from well-characterized 

transparent states at low pressure to opaque and reflecting states at high pressure has not 

been studied.  Silica has also become important as an impedance-match standard for 

shock experiments due to its well-characterized Hugoniot [39, 40, 56, 117].   

Here, we briefly review experimental observations on silica as it is shock 

compressed incrementally from its transparent state and into the reflecting regime, using 

α-quartz as a starting material. 
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Experiments: 

Shock waves were generated in quartz samples using the JANUS laser at 

Lawrence Livermore National Laboratory.  The details of this experiment are similar to 

those presented for diamond in Chapter 1 of this thesis.  Phase plates of 1mm width were 

used to load a maximum area of the target.  Pulse lengths of 6 ns were used for maximal 

shock steadiness.  Dual VISAR channels were used to unambiguously characterize fringe 

shifts.  The method of VISAR analysis was covered in Chapter 1. 

The target design is shown in Fig. 3.1.  Quartz samples were anti-reflection (AR) 

coated on the free surface so that weak reflections from within the shocked sample could 

be observed.  The quartz was mounted on an aluminum disk having a step.  The transit 

velocity of the step provides a check on the shock conditions in quartz through 

impedance matching.  Quartz was mounted with transparent Stycast 1266 heat cure 

epoxy; the gap between the quartz and aluminum was up to several microns thick and 

filled with the epoxy.  At high shock pressures, epoxy may become opaque, reducing or 

eliminating reflection from the aluminum.  A gold layer (100 nm) was deposited directly 

on a section of the base of the quartz before mounting, to provide an ideal reflecting 

interface during the experiment.  Gold was selected due to its high reflectivity and 

chemical inertness. 

The primary means of establishing shock conditions in quartz was through 

velocity interferometry (VISAR).  A VISAR record of a key experiment is shown in Fig. 

1.2.a.  The arrival of the shock varies slightly with position on the target due to variations 

in the plastic (CH) layer thickness;  the shock is thus slightly tilted with respect to the 
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target and optics, which is accounted for in the analysis.  Between events 1 and 2 in the 

VISAR record, reflected light is dominantly from the base of the quartz, from either 

aluminum or gold surfaces.  Between 2 and 3, there is a transition to dominant reflection 

from the quartz shock front, as the intensity from the quartz base drops off due to 

extinction of light transmitted through a progressively thicker region of shocked quartz.  

After event 3, reflected light is entirely from the quartz shock front. 

 This representative experiment shown in Fig. 3.2 is analyzed in detail below.  

This experiment represents the culmination of a number of experiments on quartz at low 

and high pressures. 

 

Measurements: 

In this unique experiment, both the particle velocity (at the base of quartz) and the 

shock velocity (after reflection from the base of quartz is completely extinct) are visible.  

The shock velocity at the quartz shock front is measured absolutely, using the index 

correction for a reflecting shock χ = n0 = 1.546 in Eq. 1.1.  The particle velocity at the 

base of quartz is not known a priori, as χ in this case depends on the high-pressure index 

of refraction of quartz, which has been previously measured only at low pressures [41]. 

The nearly simultaneous observation of the shock front velocity DQ with the apparent 

velocity ua of the quartz base (defined as the velocity obtained by setting χ = 1) allows us 

to measure χ, and also the high-pressure index of refraction of quartz. 

The apparent velocities and the true velocities in this experiment are shown in Fig. 

1.2.b.  The velocity of the quartz shock front indicates that the pressure of this experiment 

is ~80 GPa.  This is consistent with the conditions expected from impedance matching 
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from the aluminum, in which conditions were measured by step transit.  Since the shock 

is somewhat unsteady, the condition at the quartz shock front is not directly related to the 

condition observed at the base.  Specifically, we can write the following relationship 

between the time of measurement of DQ at the shock front (tshock front) and the time at the 

base at which the corresponding particle velocity uQ can be observed (tbase). 
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where cQ is the sound speed in quartz.  At 80 GPa, the sound speed in quartz has been 

measured to be 12 to 14.5 km/s [118].  The first visibility of the shock front occurs at t = 

1.6 ns after shock breakout; DQ = 8.19 (± 0.06) km/s at this time.  The corresponding 

time at the base at which to measure particle velocity is t=1.01-1.11 ns through Eq. 3.1, 

where uQ is determined from the quartz Hugoniot [56] and DQ.  At this time, the apparent 

velocity ua at the quartz base is 4.35 (± 0.15) km/s.  Then, considering that χ = ua/uQ, we 

find that  χ = 1.16 (± 0.04) for transparent quartz at ~80 GPa.  This is close to the low-

pressure correction, χ = 1.08 [41]. 

The index correction is related to the index of refraction through [119] 

0
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where the density ρ ~ 4.87 g/cc at 80 GPa, and the initial density of quartz ρ0 = 2.65.  

This formula gives n = 1.90 (± 0.08) as the high-pressure index of refraction of quartz. 

In addition to the index of refraction, we are also able to determine other optical 

characteristics of quartz at high pressure, specifically the reflectivity of the shock front 

and the degree of transparency of shocked quartz.  These are measured by tracking the 

intensity of VISAR fringes with time.  Due to variation in the VISAR laser-probe 
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intensity, the fringe intensity has to be normalized to this variation before any 

quantitative intensity measurements are made. 

The degree of transparency was analyzed by the Beer-Lambert law 

LeT α−=  (Eq. 3.3)

where T is the fraction of transmitted light through a distance L in a material having a 

coefficient of attenuation α.  The Beer-Lambert parameter α  was calculated by tracking 

the decay in VISAR fringe intensity between events 1 and 2 in Fig. 3.2.  This decay was 

due to two-pass absorption through an increasing thickness of shocked quartz with time.  

We use the formula 
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where initial intensity Ii and final intensity If are the fringe intensities measured at times ti 

and tf, respectively, and the change in shocked thickness between ti and tf is Δd.  For a 

quasi-steady shock this is 
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using the time-dependent shock velocity D(t) and interface velocity ui(t).  Reflection in 

the two-pass method occurred from the shocked base, off either gold or the 

aluminum/epoxy interface.  The gold layer was used specifically to avoid problems with 

glue becoming opaque at high pressure, preventing reflection from the aluminum, and 

also to minimize the possibility of reactions at the base of the quartz, which could affect 

optical properties.  The above analysis assumes that the reflectivity of the base remains 

constant in time and that α is constant throughout the shocked sample and in time: 
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reasonable approximations for this quasi-steady shocked system.  At 80 GPa, we measure 

α = 0.12 (± 0.03) μm-1. 

Shock-front reflectivity is calculated by the absolute magnitude of reflected light 

after event 3 in Fig. 3.2, compared with the initial reflectivity from the base of the quartz.  

Initial reflectivity of surfaces was calculated to be ~87% for aluminum against Stycast 

1266 epoxy (region QA in Fig. 3.2) and 72% for gold against quartz (region QG), using 

the Fresnel relation described below. 

 

Discussion: 

As shown in Fig. 3.3, the index of silica at these conditions compares reasonably 

well with the index of refraction of the high-density silica polymorph stishovite [120], 

first principles predictions of the high-pressure index of stishovite [121], and 

extrapolation of low pressure behavior [33, 41, 120]. 

The source of opacity – and reflectivity – in these experiments is also of interest.  

The loss of transmitted light at λ = 532 nm, parameterized by the Beer-Lambert 

coefficient α,  could be due to either electronic absorption processes, scattering from 

heterogeneities (e.g. shear bands [122]), or both.  If light-loss is entirely due to absorption 

in the material, then α  is the absorption coefficient and is related to the extinction 

coefficient k by 

π
αλ
4

=k  (Eq. 3.6)

With the index of refraction n, k is related to the reflectivity of a planar interface 

with a dielectric of index n0 and k0 ≈ 0 (such as a gas where n0=1, or unshocked quartz 

ahead of the reflecting shock front, where n0=1.546) through the Fresnel equation 
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 The shock reflectivity measured directly here at ~80 GPa is R = 2.3 (± 0.6)%.  

This is slightly higher than was reported previously at these conditions, R = 0.5 (± 0.2)% 

[40].  If k = 0 – that is, if all loss of light in transmission is due to scattering – then we 

calculate R=1.1 (± 0.4)% from Eq. 3.7.  If k is nonzero, we may estimate its maximum 

magnitude by assuming all extinction associated with the Beer-Lambert coefficient is due 

to absorption; hence, that Eq. 3.6 applies, giving k = 0.0051 (± 0.0013).  The effect of this 

on the calculated reflectivity is negligible. 

 The value of reflectivity determined from direct measurements of the shock front 

and that predicted from the high-pressure index of refraction appear to be relatively 

consistent; however, these measurements differ beyond their uncertainties.  This is likely 

due to the difficulty in measuring shock reflectivity, particularly at the percent-level.  

Meanwhile the magnitudes of n and k are better constrained, particularly the observation 

that k must be negligible in the calculation of reflectivity.  Thus we conclude that, at 

stresses of about 80 GPa, the shock reflectivity is due entirely to the increase in the index 

of refraction of silica at high pressure. 

Based on the above analysis, it is not clear whether the mode of transparency loss 

at 80 GPa is due to absorption, scattering or some combination of the two. However, 

above 80 GPa, quartz is totally nontransparent – transmitted light is completely 

attenuated after shock-breakout into quartz, on a timescale faster than the resolution of 

our diagnostics.   
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Above ~100 GPa, quartz becomes entirely molten (and hence, homogenous) [40, 

117] and light should not be scattered in such a medium, indicating that absorption is the 

most likely mechanism for nontransparency at these conditions.  Also, the reflectivity of 

the shock front begins increases considerably, exceeding several percent at a few hundred 

GPa.  The rising reflectivity is correlated with progressive chemical dissociation of liquid 

silica and a rise of electronic conductivity with pressure and temperature [40], consistent 

with the conclusion that electronic absorption is the dominant cause of optical extinction 

in the molten state. 

It is interesting to note that the loss of transparency occurs at or near the shock-

melting transition.  Sound-velocity data appear to show melting beginning above ~90 

GPa, and a shock temperature anomaly (superheating) suggests that melting occurs over a 

small range in shock pressure at ~110 GPa [118].  Given observations on other materials, 

such as diamond, which transition from an insulator to a metal upon shock melting [6, 36, 

37], it is possible that a similar phenomenon is occurring in quartz.  The appearance of 

strong absorption below the melt transition could be related to the presence of thin, 

molten shear bands in solid silica, which form to accommodate shear-stress relaxation 

behind the shock front [22, 122]. 

 

Conclusion: 

We have verified that quartz changes from transparent to opaque in the vicinity of 

its melting transition.  The loss of transparency correlates with the appearance of 

measurable reflectivity at the shock front, ensuring that quartz is a good reference 

window for shock experiments over its entire Hugoniot.  However, shock-front 
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reflectivity at pressures of ~80 GPa is caused by an increase in the index of refraction of 

silica at high pressure, and is not related to the loss of transparency – that is, the 

reflectivity increase is not due to a change in the electronic conductivity of silica at 

pressures of ~100 GPa.  This contrasts with the higher-pressure behavior of SiO2, in 

which electronic conduction plays a strong role in the reflectivity. 
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Figure 3.1.  Quartz target design.  The quartz window was AR-coated on the free surface, 
and partially coated with 100 nm of gold on the base; it was attached to an aluminum
base with Stycast 1266 heat-cure epoxy.  The aluminum base was diamond-turned, with a 
25 μm step; base thickness was 50 μm on the low side on which the quartz was mounted; 
10-15 μm of plastic (CH) was deposited on the drive side of the base for optimum
coupling to the laser pulse. 
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Figure 3.2.  Experiment on alpha-quartz at the boundary between transparent and opaque
on the Hugoniot, P ~ 80 GPa.  (a) VISAR image of shot qug3.  Spatial dimension
(vertical) is about 800 microns fullscale. Region S: aluminum step; region QA: quartz on
aluminum with glue interlayer; region QG:  same as QA with gold layer directly
deposited on quartz.  Events are 1: breakout from aluminum base, step in breakout due to
gap between parts; 2: reflection from base has dropped and become equal to shock
reflectivity; 3: only quartz shock front reflection visible; 4: shock in aluminum breaks out
of step.  (b) velocity record, corrected for timing variations with spatial position.
Velocity in transition zone (between events 2 and 3) is undefined due to equal reflection
from base and shock front, which blurs the VISAR interference pattern due to unequal
velocities.  The shot energy was 265 J, the pulselength 6 ns and the phase plate 1mm in
width. 
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Figure 3.3. Index of refraction of SiO2 vs. density.  Dark circles are index of silica 
polymorphs reported by Marler [120].  Open squares and diamonds are shock data on
fused silica [33] and α-quartz [41], respectively.  The highest-density silica polymorph, 
stishovite, is octahedrally-coordinated and diverges from the linear behavior of the
tetrahedrally-coordinated polymorphs at low density, given by the line.  First principles
predictions of the index of stishovite are shown for the x- (upward triangles) and z-
(downward triangles) axes [121].  Our measurement of the index of refraction of shocked 
quartz at high density is the open circle with the error bar. 
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APPENDICES 
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Appendix A: Evaluation of shock steadiness. 

 

Due to the generally unsteady conditions of laser-driven loading, it is important to 

evaluate to what extent these laser-driven experiments are suitable for Hugoniot 

measurements, particularly those on the second wave, which could be significantly 

affected by variations in drive-pressure with time.  The objective is to verify that ideal 

conditions of shock steadiness are achieved.  In particular, we must be wary of the 

rarefaction wave, initiated on termination of the laser drive, catching up to the shock front 

on the experimental timescale.  With sample-transit times of up to 12 ns, and laser drive 

pulses 1-6 ns in duration, unsteady loading, particularly in the form of shock attenuation, 

is observed to play some role in these experiments. 

We have observed clear evidence of shock attenuation in experiments of 1- to 4-

ns pulse duration.  The shock conditions of these experiments have relatively larger 

uncertainties due to this effect, and should be considered approximate.  Our main concern 

here is the analysis of quasi-steady, 6-ns pulse experiments. 

The quartz window served as a reference for shock steadiness, by permitting 

direct observation of the velocity of the quartz shock front during the experimental 

timescale.  In targets where free-surface reflectivity was too high to observe the shock 

velocity directly, the pyrometer still recorded shock thermal emission, allowing the 

relative steadiness or unsteadiness of the shock to be evaluated.  For example, the 

difference between the 4-ns experiments and the 6-ns experiments at the same laser 

energy is clearly visible in the thermal emission records; in the 6-ns shots, emission 
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varies around a mean value during the experiment, while in the 4-ns shots, emission 

continuously decreases. 

The unsteadiness in these experiments may feature rarefaction, ramp and reshock 

behavior, and is defined by a complicated interplay of laser-plasma coupling and target 

design.  These details result in a state, that, even for experiments that have avoided 

rarefaction following the termination of the laser drive, exhibits some degree of temporal 

fluctuation in shock speed, stress and temperature. 

Measurements of the quartz shock front conditions with time can constrain the 

steadiness of the shock in diamond via the following comparison.  At time tQ in the 

quartz, there is a time tD in diamond at which the drive pressure variations experienced by 

the quartz shock front have also been experienced by the diamond shock front (where tQ 

and tD are zero at the time the shock breaks out of the aluminum base).  This relationship 

can be expressed as: 
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where DQ, uQ and cQ are the quartz shock speed, particle speed and sound speed, 

respectively, and DD, uD and cD are the diamond shock speed, particle speed and sound 

speed.  It has been assumed that a given pressure perturbation reaches the base of the 

quartz and diamond simultaneously.  For most experiments here, quartz is shocked 

beyond its melting point [40], and cQ can be given by the bulk sound speed 

cB= SddP )/( ρ ; this can be estimated from the slope of the quartz Hugoniot in P-ρ  

space, or by measurements of the sound velocity at low stress [118, 123].  The choice of 

cD depends on whether diamond assumes elastic behavior or fluid-like behavior during 
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sound propagation.  For fluid-like behavior, cD=cB, which can be evaluated from the slope 

of the isentrope (Eq. 1.9) at the volume of the final shock state (Fig. 1.10).  For elastic 

behavior, cD can be estimated by assuming an isotropic elastic medium, for which the 

longitudinal sound velocity is cL= ρ/)3/4( GK +  (where K is the bulk modulus and G 

the shear modulus).  Recognizing that cB= ρ/K  and G=3K(1-2υ)/2(1+υ) (where υ is 

Poisson’s ratio) we have for  diamond (υ~0.1) cL=1.57cB. 

To illustrate the use of Eq. A.1, we consider the conditions of the steady-drive 

experiments at P2 ~ 250 GPa in the present study, as given by shot dh14 in Fig. 1.3.a.  

For cD, we consider the extreme cases of bulk sound speed and elastic sound speed.  This 

gives a relation of tQ ~ 0.5 tD for the bulk case and tQ ~ 1.2 tD for the elastic case.  For thin 

(100 μm) targets, tD = 6 ns after the inelastic shock transits the target; this corresponds to 

tQ = 3 (7.2) ns for bulk (elastic) cD, a ±2 (4)% velocity variation in the quartz shock front 

and a ±6 (11)% variation in stress at the front.  To first order, we expect the same relative 

variation in stress at the diamond shock front to tD = 6 ns.  For thicker targets (200 μm), 

tD = 12 ns after inelastic shock transit, corresponding to tQ = 6 (14.4) ns, a variation in 

quartz shock velocity of ±5 (6)% and a variation on shock front stress of  ±15 (16)%.  In 

some cases, particularly for elastic cD, it would be necessary to observe the quartz shock 

front beyond the end of the streak window, or after it arrives at the free-surface, for a full 

constraint on shock steadiness by this technique. 

This effect of unsteadiness is accounted for in impedance-match analysis by 

considering an uncertainty in the reference conditions of quartz and aluminum that 

accounts for the above variations. 
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In the case of transparent quartz, the pressure variations at the base of the quartz 

are observed through changes in the particle velocity at this interface.  The analogous 

relation to Eq. A.1 is 

D
D

DDD
Q t

c
Duct ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −+
=  (Eq. A.2)

Only a single shot in the present study exhibited a transparent shock in quartz, shot dh6. 

Elastic precursor waves are not significantly affected by drive unsteadiness for 

most conditions studied here; instead, elastic waves vary in amplitude due to internal 

relaxation.  Above the HEL, elastic waves propagate ahead of a slower, high-amplitude 

inelastic shock, into which pressure perturbations from the drive surface are absorbed as 

they propagate forward.  These perturbations should alter the conditions of the inelastic 

wave, while the elastic precursor wave, insensitive the amplitude of the inelastic wave, 

behaves as it would under steady-loading conditions. 
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Appendix B: Relationships between Lagrangian and Eulerian third-order elastic 

constants. 

Analytical Approach 

Birch [83] suggested an analytic means of obtaining relations between Lagrangian 

and Eulerian elastic constants, as he was aware that typically only the Lagrangian 

constants are known.  In that work, he obtained partial relations between the third-order 

Eulerian elastic constants, Dmno, and the third-order Lagrangian elastic constants CMNO for 

a cubic system.  The relations obtained in that study are not completely correct due to his 

use of antiquated third-order elastic constant notation [82, 87] in his free-energy 

expansion (Eq. 12 in that study).  With a modern version of Birch’s Eq. 12  (Eq. 2.14 

here) and using new strain systems defined in the present study (uniaxial strain in <100>, 

<110> and <111> directions), we extend Birch’s analysis to obtain complete 

relationships between the Lagrangian and Eulerian elastic constants for a cubic crystal, 

given in Eq. 2.15. 

First, consider the internal energy expansions for Lagrangian and Eulerian strain 

in Eqs. 2.10.a and 2.10.b.  For a given strain, Birch postulated that the internal energies 

should be equivalent.  The Lagrangian and Eulerian definitions of strain used in these 

expansions (Eqs. 2.2 and 2.3) cannot be immediately equated, and we will consider a 

more fundamental (absolute) definition of strain that circumvents the differences in these 

strain definitions to allow different order terms in the energy expansions to be equated.  

These can be obtained as follows. 
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Birch considered a system of hydrostatic compression with slight infinitesimal 

offsets from pure hydrostaticity.   The coordinate displacements in this system were 

written as 

])1()[1(
])1()[1(

])1)[(1(

3332231133

3232221122

3132121111

aaax
aaax

aaax

βββα
βββα
βββα

+++−=
+++−=
+++−=

 (Eq. B.1)

The inverse of this coordinate definition aI(xj) can be obtained algebraically, but it is 

important to note that any second-order terms of βij should be retained for reasons that 

will be explained later.  In this system, α  describes the uniform (isotropic) strain, and the 

βij describe small anisotropic perturbations from the isotropic strain state. 

 Eq. B.1 and its inverse determine the Lagrangian and Eulerian strain through Eqs. 

2.2 and 2.3.  Thus, the internal energy expansions in Eq. 2.10 can be rewritten as 

functions of the strain parameter α and the perturbations βij.  Significant algebra reduces 

these strain-energy functions to terms consisting of different powers in α and βij. 

As we are only interested in the third-order parameters, the internal energy 

expansions are truncated at the third order in Eulerian and Lagrangian strain.  However, 

this does not correspond to truncation at the third order in the strain parameter α, as can 

be seen when the expansions are written in terms of α.  A large number of higher-order 

terms in α appear.  For the lowest order in α, only the second-order elastic constants are 

involved.  For the next highest order in α, both the second- and third-order constants are 

involved.  For the next-highest order in α, second-, third- and fourth-order constants will 

be involved, and so on.  The numerous higher-order terms arising in this treatment, 

however, contain only the contributions from the second- and third-order elastic constants, 
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due to the initial truncation, and are thus missing the contribution from fourth-order and 

higher elastic constants.  That is, the higher-order terms represent incomplete 

contributions from higher-order elasticity, and so we are limited to looking only at the 

first two orders in α. 

 Next, the system can be specified to have a variety of strain configurations.  The 

simplest is that all βij = 0: in other words, the system is under hydrostatic stress.  This 

reduces the Eulerian and Lagrangian strain energy formulae to a small number of terms.  

Terms of identical order can then be equated.  In this case, we find that 

1121231111211112123111 62241262 CCCCCDDD ++++=++  (Eq. B.2)

 Next, consider a system in which β12 ≠ 0 and all other βij = 0.  The strain-energy 

formulae are compared again, and we find 

166144441211166144 28422 CCcCCDD ++++=+  (Eq. B.3)

In this case, the terms being equated to obtain Eq. B.3 contain quadratic β12 factors, 

which is why we must retain quadratic βij terms during the course of the analysis. 

 Finally, consider a system in which β11 ≠ 0 and all other βij = 0.  This leads to  

1121111211112111 28122 CCCCDD +++=+  (Eq. B.4)

where again quadratic βij appear in the terms being compared. 

 It seems that in forming these three relations we have exhausted the potential of 

the strain configuration defined by Birch (Eq. B.1) for the purposes of relating the 

Lagrangian and Eulerian third-order constants.  Three more independent relations are 

needed to absolutely define the Dmno in terms of the CMNO and CMN.  Fortunately, we have 

defined three additional strain configurations in this study, for uniaxial strain in <100>, 

<110> and <111> in a cubic crystal. 
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 Now, instead of using B.1 and its inverse, we use Eqs. 2.24, 2.30 and 2.31 to 

define the Lagrangian and Eulerian strains in Eqs. 2.2 and 2.3, replacing the parameter γ 

with (1 - α) in analogy with Birch’s treatment.  As before, we rewrite the internal energy 

expansions Eq. 2.10 in terms of α, and equate like terms of α, ignoring incomplete 

higher-order terms.  Note that the strain parameter α now describes uniaxial strain (as 

opposed to isotropic strain).  

 For <100> uniaxial strain we obtain 

11111111 12 CCD +=  (Eq. B.5)

For <110> we have 

166112111121211166112111 123482424123 CCCCCCDDD +++++=++  (Eq. B.6)

and for <111> we have 

456166144123112111441211

456166144123112111

162412261447236

16241226

CCCCCCCCC

DDDDDD

++++++++

=+++++
 (Eq. B.7)

 Solving Eqs. B.2-B.7, we are able to define all Dmno as in Eq. 2.15. 

 The simplest uniaxial-strain configuration for a cubic crystal, that of <100> strain, 

is mathematically identical to uniaxial strain in certain high-symmetry directions of non-

cubic crystals, such as a- and c-axis compression of trigonal crystals.  The displacement 

equations are also given by Eq. 2.24, and consequently the Lagrangian and Eulerian 

strains Eqs. 2.2 and 2.3 and the strain-energy relations Eqs. 2.10.a and 2.10.b are identical 

in form to the case of <100> strain.  Hence, as in B.5, we may write 

MMMMMmmm CCD +=12  (Eq. B.8)

for such high-symmetry directions, where m and M are Voigt pairs of indices, with m,M = 

1 for the a-axis of a trigonal crystal, and m,M = 3 for the c-axis. 
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Computational Approach 

We can also consider a computational means of obtaining the relationship 

between the Lagrangian and Eulerian third-order constants.  In this approach, we generate 

the internal energy vs. strain function from Eq. 2.10.a using the known Lagrangian third-

order constants, and find the best fit of this internal energy using Eq. 2.10.b, fitting for 

the third-order Eulerian elastic constants. 

Considering the uniaxial-strain configurations, we have for <100> strain, 

expanded to third order, the following strain energy relation. 

[ ] L++=− 3
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2
1)0,(),( ηηφηφρ CCSS  (Eq. B.9)

This relation is identical to the Eulerian one with third-order C constants replaced by D.  

Note that the third-order term here contains only a single elastic constant, C111 or D111, 

and hence, as in Fig. B.1, the D111 constant is determined by comparing the Lagrangian 

and Eulerian energy expansions. 

 For <110> and <111> strain, fitting can only resolve a combination of third-order 

Eulerian elastic constants, as in the third-order terms of the energy expansions 
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for <110> strain and 
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for <111> strain. 
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Using a large number of strain configurations, as in the previous section of this 

Appendix, we might be able to use this technique to reveal all the individual elastic 

constants computationally.  However, as shown in Fig. B.1, the agreement of the simpler 

analytical predictions with the computational results suggests that further work to this end 

is redundant, and less precise. 
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Fig B.1 Results of computational method to determine elastic constants for strain in the
(a) <100>, (b) <110> and (c) <111> directions in diamond, plotted against the maximum 
strain used in the computation.  The black lines show the computational results, which are
highly uncertain at low strain.  The red line is the result expected from the analytical
approach discussed in the text.  The grey line is the ratio (in %) of the magnitude of the
third-order term to the second-order term in the energy expansion.  As the third-order 
term approaches the magnitude of the second-order term, the agreement with the 
analytical approach degrades, which is expected since the computational approach
implicitly assumes that each term in the energy expansion is negligible with respect to the
lower-order terms. 
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Appendix C:  Elastic Hugoniot Models in Polynomial Form 
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All finite-strain elastic Hugoniot models require a fourth-order term except for the 

Lagrangian model in the case of <110> compression, for which only terms to third order 

are needed.  The development of these models is discussed in Chapter 2. 
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Appendix D:  Corrections to the Pavlovskii Hugoniot 
 

No report of elastic precursors or two-wave structures appeared in the earliest 

study of the shock response of single-crystal diamond by Pavlovskii [23].  Even ignoring 

the present measurements, this is highly suspicious, as the ambient longitudinal sound 

speed in the <100> orientation exceeds the reported shock speeds in that study for all but 

the highest stress datapoint.  Because Pavlovskii’s study has been frequently used in 

equation-of-state modeling, it is of interest to evaluate these measurements in light of the 

present results. 

Here we attempt to re-interpret that data by accounting for the effects of the two-

wave structure on Pavlovskii’s experiment.  In doing so, we make the following 

assumptions, in part due to limited information available regarding the experiment: 

a) Elastic precursors and two-wave structures were present in Pavlovskii’s experiments.  

We further assume that the elastic precursor did not trigger the electrical contact used to 

measure shock arrival, while the arrival of the inelastic wave did.  Kondo and Ahrens [7] 

found that their electrical contacts did not respond to the first wave in diamond. 

b) The apparent velocity of the inelastic wave reported by Pavlovskii, /
2D  (after Eq. 1.6.d), 

would have been affected by the earlier arrival of the elastic precursor at the contact.  To 

account for this effect, we assume that Pavlovskii’s measurement used an electrical 

contact mounted on a free-surface of the diamond sample, a common arrangement for the 

study of brittle solids by Russian researchers of this time period [124, 125].  The effect of 

the elastic precursor on /
2D  can then be assumed to take the form of the free-surface 

correction discussed earlier.  Using Eqs. 1.6.a to 1.6.d, the corrected shock velocity D2 
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can be found from Pavlovskii’s measurement of D2
/ and an assumed elastic precursor 

condition: 

/
2113

/
21

1
/
211

/
2

2
11

/
23111

/
231

2 )2(
)23())(2()2(

DuuDDD
DDuDDDDDDuuDDDD

D
+−+

−−+−−+−
=  (Eq. D.1)

Use of this correction assumes that the contact interacted negligibly with the free-surface 

reverberation, and that the free surface was in contact with vacuum.  As for our 

measurements, we consider a range for D3 of (D1 + 2u1 ≥ D3 ≥ D2 + 2u1) in applying this 

correction.  We also examined the alternative but less likely possibility that the electrical 

contact was embedded in the diamond.  This correction has the form 

1
/
2

1

0
2 uDD +=

ρ
ρ

 (Eq. D.2)

Again, it is assumed that the contact does not significantly interact with shock 

propagation.  The correction implied by Eq. D.2 is not significantly different from that 

given by Eq. D.1. 

c) We take the magnitude of the elastic precursor to be the lowest-stress value observed 

in the present study for the <100> orientation, P1 = 80.12 (± 12.43) GPa.  It does not 

significantly alter the results to account for precursor scaling with final stress; and, 

because Pavlovskii’s experiments were of much longer duration that our own, it is 

reasonable to assume the precursor had relaxed to a minimum value during his 

experiment. 

 With these assumptions, Pavlovskii’s original measurements were reanalyzed as 

follows.  First, the initial iron driver conditions were recovered through impedance 

matching without a precursor state, using Pavlovskii’s data and the iron Hugoniot [126].  

The mirror reflection of the iron Hugoniot about the initial state was used to represent the 
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re-shock and release response.  The iron-driver initial state was then impedance-matched 

to diamond with an assumed precursor state.  The results are shown in Fig. D.1. 

An uncertainty of 0.025 km/s was added to the iron driver reference shock 

velocities before impedance matching.  However, the major sources of uncertainty in this 

approach, beyond any possible systematic errors due the assumptions made, are the 

uncertainty in the free surface correction, and the uncertainty in the precursor state.  The 

relatively high precision of Pavlovskii’s reported data is thus significantly reduced by this 

analysis. 

 While significant assumptions have been made here, we believe this is the best 

possible attempt to reinterpret the data of Pavlovskii without knowing further 

experimental details.  Clearly questions remain.  For example, we have ignored possible 

interactions of electrical contacts with the shock waves.  For a variety of contacts used by 

Pavlovskii and his coworkers in the 1960s and 1970s for free-surface shock detection, 

this assumption may be inappropriate.  For example, if the contact had sufficient mass 

and took up a sufficient area on the free surface, or if the contact was imbedded in a 

matrix such as paraffin coating the free surface, then a different correction would be 

called for which includes the impedance of the material lying on the surface.  

Furthermore, the nature of the detection, and how shock arrivals were selected, remains a 

mystery.  It is unclear why two of the references [124, 125] provided by Pavlovskii for 

the experimental arrangement in [23] also are cited in a work on silicon and germanium 

by the same author [127], in which elastic precursors were detected.  Thus, we must 

consider our corrections to be approximate, and, at least, illustrative of the errors likely 
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present in Pavlovskii’s study.  It is clear that even with this correction, Pavlovskii’s 

results do not come into agreement with our own (Fig. D.1.a).  

The highest-stress data-point in Pavlovksii’s study is insensitive to correction for 

the elastic precursor.  This is true if the elastic precursor is overdriven, which is the case 

if we use the lowest amplitude elastic precursor from the present study; it is also true 

when the scaling of precursor conditions with inelastic-wave conditions is considered, 

since D1 ~ D2 >> u1 and, consequently, 2-wave impedance matching gives a similar result 

to 1-wave impedance matching (ignoring the precursor).  Thus, we consider the highest-

stress Hugoniot datum reported by Pavlovskii, at a stress of about 600 GPa, to be 

relatively accurate. 

 The corrected data of Pavlovskii show a strong offset from the hydrostat at low 

stress conditions, whereas at high stresses the data appear to converge with the hydrostat, 

suggesting strength is reduced at higher stresses.  The relatively close agreement of 

Pavlovskii’s original data with the hydrostatic response at low stresses (Fig D.1.b) is 

most likely spurious, given the magnitude of the errors suggested by the present 

correction.



 
13

8

     T
ab

le
 D

.1
 P

av
lo

vs
ki

i v
al

ue
s c

or
re

ct
ed

 fo
r t

he
 tw

o-
w

av
e 

st
ru

ct
ur

e.
    

sh
ot

D
2

/
D

Fe
D

1
δD

1
u 1

δu
1

D
2

δD
2

u 2
δu

2
P

2
δP

2
ρ

2
δρ

2

(k
m

/s)
(k

m
/s)

1
14

.1
8

6.
99

4
20

.2
2

0.
52

1.
12

8
0.

17
3

13
.9

6
0.

49
1.

83
9

0.
07

4
11

3.
9

5.
5

3.
94

0.
06

2
14

.9
4

8.
06

5
20

.2
2

0.
52

1.
12

8
0.

17
3

14
.8

2
0.

37
2.

65
5

0.
06

8
15

7.
7

5.
6

4.
18

0.
06

3
17

.3
3

11
.0

8
20

.2
2

0.
52

1.
12

8
0.

17
3

17
.3

7
0.

10
5.

10
2

0.
04

1
32

0.
0

4.
1

4.
92

0.
04

4
20

.5
0

14
.5

3
…

a
…

a
20

.5
0

8.
20

0
59

0.
9

5.
86

a  p
re

cu
rso

r o
ve

ru
n 

by
 p

la
sti

c w
av

e, 
re

su
lts

 ar
e p

av
lo

vs
ki

i's
 o

rig
in

al

Co
rre

cte
d 

Pa
vl

ov
sk

ii 
Da

ta
Pa

vl
ov

sk
ii 

(1
97

1)
As

su
m

ed
 E

las
tic

 L
im

it

(G
Pa

)
(g

/c
m

3 )
(k

m
/s)

(k
m

/s)
(k

m
/s)

(k
m

/s)

 
     

138 

 



 139

 (a)

 
(b)

 
Figure D.1.  Original (black, open, crossed squares) and corrected (black open polygons)
data of Pavlovskii [23] in (a) D-u and (b) P-ρ spaces, shown with the present results on 
the <100> orientation of diamond.  Remaining symbols and coloration are as in Fig. 1.10
and 1.11.  The three lowest stress data of Pavlovskii exhibit shock speeds less than the 
ambient longitudinal sound speed (purple triangle), which strongly suggests precursors
were present in that study.  Pavlovskii’s data, either before or after correction, show a
disagreement with the present results in (a).  In (b), the agreement of Pavlovskii’s original
measurements with the hydrostatic response at low stress may be spurious; correction for
an elastic precursor results in a significant deviation from the hydrostat.  The highest-
stress datum of Pavlovskii is unaffected by the elastic precursor and is considered to be
accurate. 
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