
13 Symmetries in Particle Physics

Symmetries play in important role in particle physics. The mathematical description
of symmetries uses group theory, examples of which are SU(2) and SU(3):

A serious student of elementary particle physics should plan eventually to
study this subject in far greater detail. (Griffiths P.115)

There is a relation between symmetries and conservation laws which is known as
Noether’s theorem. Examples of this in classical physics are:

• invariance under change of time → conservation of energy

• invariance under translation in space → conservation of momentum

• invariance under rotation → conservation of angular momentum

In particle physics there are many examples of symmetries and their associated con-
servation laws. There are also cases where a symmetry is broken, and the mechanism
has to be understood. The breaking of electroweak symmetry and the associated Higgs
field will be discussed in lecture 18.

13.1 Gauge Symmetries*

The Lagrangian is L = T − V , where T and V are the kinetic and potential energies of
a system. It can be used to obtain the equations of motion. The Dirac equation follows
from a Lagrangian of the form:

L = iψ̄γµ∂
µ
ψ −mψ̄ψ (13.1)

It can be seen that this Lagrangian is invariant under a phase transformation:

ψ → e
iα

ψ ψ̄ → e
−iα

ψ̄ (13.2)

This is an example of a gauge invariance.

13.1.1 U(1) Symmetry of QED*

The Lagrangian for QED is written:

L = ψ̄(iγµ∂
µ
−m)ψ + eψ̄γµA

µ
ψ −

1

4
FµνF

µν (13.3)

where A
µ represents the photon, and the second term can be thought of as JµA

µ where
Jµ = eψ̄γ

µ
ψ is an electromagnetic current. Fµν is the electromagnetic field tensor:

Fµν = ∂µAν − ∂νAµ (13.4)
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The gauge transformation is:

ψ → e
iα

ψ Aµ → Aµ +
1

e
∂µα (13.5)

This has the property that it conserves the current, and hence conserves electric charge.
A mass term mAµA

µ is forbidden in the Lagrangian by gauge invariance. This explains
why the photon must be massless.

The gauge invariance of QED is described mathematically by a U(1) group.

13.1.2 SU(3) Symmetry of QCD*

SU(3) symmetry was introduced in Lecture 9 to describe QCD interactions. A rotation
in colour space is written as:

U = e
−iαa·λa

(13.6)

where αa are the equivalent of “angles”, and λ
a are the generators of SU(3) (equa-

tions (9.2) - (9.4)). QCD amplitudes can be shown to be invariant under this gauge
transformation.

The transformations of the quark and gluon states are:

q→ (1 + iαaλ
a)q G

a

µ
→ G

a

µ
−

1

gs

∂µαa − fabcαbG
c

µ
(13.7)

The Lagrangian for QCD is written:

L = q̄(iγµ∂
µ
−m)q + gsq̄γµλ

a
G

µ

a
q−

1

4
G

a

µν
G

µν

a
(13.8)

Where q represent the quark spinors, and compared to QED, the gluon states G
a

µ

replace the photon, and gs replaces e. The gluon field energy contains a term for the
self-interactions of the gluons:

G
a

µν
= ∂µG

a

ν
− ∂νG

a

µ
− gsfabcG

b

µ
G

c

ν
(13.9)

The absence of a mass term mG
a

µ
G

µ

a
makes the gluon massless.

13.2 Flavour Symmetries

In Lecture 11 we met isospin symmetry, which is a flavour symmetry of the strong
interactions between u and d quarks. It is described by SU(2), and can be extended
to SU(3) with the addition of the s quark. The SU(3) symmetry is partially broken by
the s quark mass. In principle this could be extended further to an SU(6) symmetry
between all the quark flavours, but at this point the level of symmetry breaking becomes
rather large. The interesting question, to which we do not yet have an answer, is what
causes the breaking of quark flavour symmetry.
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13.3 Discrete Symmetries

There are three important discrete symmetries: parity (P ), charge conjugation (C) and
time reversal (T ). These are discussed in the following sections.

13.4 Parity

The parity operation P performs a spatial inversion through the origin:

Pψ(�r) = ψ(−�r) (13.10)

This is NOT a mirror reflection through an axis, e.g. ψ(x) → ψ(−x). Many books get
this wrong!

Applying parity twice restores the original state, P
2 = 1. From this the parity of a

wavefunction ψ(�r) has to be either even, P = +1, or odd, P = −1. For example
ψ(x) = cos kx is even, and ψ(x) = sin kx is odd.

The hydrogen atom wavefunctions are a product of a radial function f(r) and the
spherical harmonics Y

m

L
(θ, φ), where L and m are the orbital angular momentum of the

state and its projection along an axis. In spherical polar coordinates the parity operation
changes {r, θ, φ} −→ {r, π − θ, π + φ}. From the properties of Y

m

L
the wavefunctions

have parity P = (−1)L. It is observed that single photon transitions between atomic
states obey the selection rule ∆L = ±1. From this it can be deduced that the intrinsic
parity of the photon is:

(−1)L = (−1)L±1
× Pγ Pγ = −1 (13.11)

The parity of the photon can also be obtained from the gauge symmetry of QED
discussed in the previous section.

13.4.1 Intrinsic Parity of Fermions

Applying a spatial inversion to the Dirac equation gives
�

iγ
0 ∂

∂t
− i�γ · ��−m

�
ψ( �−r, t) = 0 (13.12)

This is not the same as the Dirac equation because there is a change of sign of the first
derivative in the spatial coordinates. If we multiply from the left by γ

0 and use the
relations (γ0)2 = 1 and γ

0
γ

i + γ
i
γ

0 = 0 (i = 1, 2, 3) we get back a valid Dirac equation:
�

iγ
0 ∂

∂t
+ i�γ · ��−m

�
γ

0
ψ( �−r, t) = 0 (13.13)

We identify the parity operator with γ
0:

ψ(�r, t) = P ψ(−�r, t) = γ
0
ψ(−�r, t) (13.14)

Applying this to the Dirac spinors (equation (5.24)):

P u1 = +u1 P u2 = +u2 P v1 = −v1 P v2 = −v2 (13.15)
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• The intrinsic parity of fermions is P = +1 (even)

• The intrinsic parity of antifermions is P = −1 (odd)

Parity is a multiplicative quantum number, so the parity of a many particle system is
equal to the product of the intrinsic parities of the particles times the parity of the
spatial wavefunction which is (−1)L.

As an example, positronium is an e
+
e
− atom with:

P (e+
e
−) = Pe−Pe+(−1)L = (−1)L+1 (13.16)

where L is the relative orbital angular momentum between the e
+ and e

−.

13.5 Charge Conjugation

Charge Conjugation is a discrete symmetry that reverses the sign of the electric charge,
colour charge and magnetic moment of a particle. (It also reverses the values of the
weak ispospin and hypercharge charges associated with the weak force, which we will
meet in lecture 17.) Like the parity operator it satisfies C

2 = 1, and has possible
eigenvalues C = ±1. Electromagnetism is C invariant, since Maxwell’s equations apply
equally to + and − charges. However the electromagnetic fields change sign under C,
which means the photon has:

Cγ = −1 (13.17)

For fermions charge conjugation changes a particle into an antiparticle, so fermions
themselves are not eigenstates of C. Combinations of fermions can be eigenstates of C.
for example, positronium has:

C(e+
e
−) = (−1)L+S (13.18)

where S is the sum of the spins which can be either 0 or 1.

Electromagnetic interactions are invariant under charge conjugation and parity, and
conserve C and P quantum numbers.

We can also determine the P and C quantum numbers of mesons. The lowest pseu-
doscalar mesons (figure 11.2) have J

PC = 0−+ and the vector mesons (figure 11.3) have
J

PC = 1−−.

13.6 Time Reversal

Time reversal Tψ(t) = ψ(−t), is another discrete symmetry operator with T
2 = 1, and

possible eigenvalues T = ±1. The solutions of the Dirac equation describe antifermion
states as equivalent to fermion states with the time and space coordinates reversed.
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Figure 13.1: The action of the P (top), C (middle) and T (bottom) operators on a
fundamental fermion. Note that the action of the operator twice on the state gives the
original state back!
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13.7 Summary of Discrete Symmetry Transformations

Figure 13.1 illustrates the actions of C, P and T on a fundamental fermion.

• A polar vector such as momentum, �p, transforms under parity P�p = −�p, P = −1.

• An axial vector such as angular momentum, �L = �r × �p transforms as P �L = �L,
P = +1. The parity operator changes the direction of motion of a particle, but
not the direction of the spin vector. As the helicity quantum number is a measure
of the spin vector w.r.t. the momentum vector, parity changes a left-handed state
into a right-handed state, and vice-versa.

• Charge conjugation reverses the charge, but does not change the direction of the
spin vector or the momentum of a particle.

• Time reversal changes the sign of both the spin and momentum.

A summary of the effects of C, P and T on various quantities is shown in the table
below.

Quantity Notation P C T

Position �r −1 +1 +1
Momentum (Vector) �p −1 +1 −1
Spin (Axial Vector) �σ = �r × �p +1 +1 −1
Helicity �σ.�p −1 +1 +1
Electric Field �E −1 −1 +1
Magnetic Field �B +1 −1 −1
Magnetic Dipole Moment �σ · �B +1 −1 +1
Electric Dipole Moment �σ · �E −1 −1 −1
Transverse Polarization �σ · (�p1 × �p2) +1 +1 −1

13.8 Parity Violation in Weak Interactions

In contrast to electromagnetic and strong interacions it is found that weak interactions
maximally violate both parity and charge conjugation symmetries.

The original evidence for parity violation came from the study of the β decay of polarized
60Co, where it was observed that the electron was emitted preferentially in the direction
opposite to the spin of the nucleus. The distribution of the decay electrons can be
described by:

dN

dΩ
= 1−

�σ · �p

E
(13.19)

The parity operator reverses the direction of the electron but not the spin of the nucleus,
so the �σ · �p term is parity-violating.

Parity violation means that, for the weak interaction, there is a preferred spatial direc-
tion.
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13.8.1 Parity Transformation of Vertex Terms

Recall that the vertex term for W -boson exchange is gW γ
µ(1− γ

5)/
√

8. Under parity:

P (γµ
− γ

µ
γ

5)→ γ
µ + γ

µ
γ

5 (13.20)

the term changes.

Compare this to the QED and QCD vertex terms where the vertex terms stay the same
and parity is conserved:

P (γµ)→ γ
µ (13.21)
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14 CP , CPT and CP Violation

Figure 14.1: The action of the CP (top) and and CPT (bottom) operators on a fun-
damental fermion. The equals sign in the bottom plot represents CPT conservation.

14.1 CPT Theorem

The CPT theorem requires that all interactions that are described by localized Lorentz
invariant gauge theories must be invariant under the combined operation of C, P and
T in any order. The proof of the CPT theorem is based on very general field theoretic
assumptions. It can be thought of as a statement about the invariance of Feynman
diagrams under particle/antiparticle interchange, and interchange of the initial and
final states.

The CPT theorem also means that the transformation properties of gauge theories
under the discrete symmetries C, P and T are related to each other:

CP ↔ T CT ↔ P PT ↔ C (14.1)

The first of these establishes that time reversal invariance is equivalent to CP invariance.

14.2 Tests of CPT Invariance

The CPT theorem predicts that particles and antiparticles must have the same mass
and lifetime, but opposite electric charge and magnetic moment. Experimental tests of
the CPT theorem have shown very precise agreement.
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Some of the experimental evidence for CPT invariance are:

M(K0)−M(K
0
)

1
2 [M(K0) + M(K

0
)]

< 10−18

Γ(K0)− Γ(K
0
)

1
2 [M(K0) + M(K

0
)]

< 10−17 (14.2)

Q(p) + Q(p̄) < 10−21
e

14.3 CP Symmetry

Both charge conjugation and parity are found to be maximally violated in weak decays.
However, experimental results suggest the combination CP is a nearly a conserved
symmetry. CP turns a particle into its antiparticle with opposite helicity: it is a
symmetry between matter and anti-matter CP is a conserved quantity in absolutely
strong and electromagnetic interactions.

14.4 Sakharov Conditions to explain the Matter - Anti-Matter
Asymmetry of the Universe*

In the Big Bang model of the universe there is an arrow of time, whereby time only goes
forward, and therefore T may not be a valid symmetry of the universe. It is believed
that matter and antimatter were originally created in equal amounts in the big bang.
However we observe that we live in a matter dominated universe, with a baryon density
compared to photons of Nb/Nγ = 10−9, and no evidence for primordial antibaryons. In
1966 Sakharov postulated three conditions that are necessary for our matter-dominated
universe to exist:

• An epoch with no thermal equilibrium

• Baryon number violation

• CP Violation (or equivalently T violation)

Therefore CP violation is required to explain the difference between matter and anti-
matter.

14.5 Neutrino States

The neutrino states are illustrated in figure 14.2.

A massless neutrino is purely left-handed, and a massless antineutrino is purely right-
handed. The P operator reverses the helicity state. The C operator changes a neutrino
into an antineutrino. Each of these operators by itself changes a physical state into
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!L
Left-handed

 neutrino
RIght-handed

neutrino
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Parity (P)

FORBIDDEN

Left-handed
antineutrino

Charge
Conjugation (C)

Right-handed
antineutrino

ALLOWED

CP

!̅L

!R

!̅R
Parity (P)

Charge
Conjugation (C)

FORBIDDEN

Figure 14.2: The operation of C and P on neutrinos.

a forbidden state, again showing that P and C must be maximally violated in weak
interactions with neutrinos. The combined operator CP changes a left-handed neutrino
into a right-handed antineutrino which is allowed.

This provides another motivation as to why to consider the symmetry of the combined
CP operation.

14.6 Neutral Meson Mixing

Second order weak interactions can mix long-lived neutral mesons with their antiparti-
cles. Mixing of the following mesons has been observed:

K
0(s̄d), D

0(c̄u), B
0(b̄d), B

0
s (b̄s) (14.3)

The following transitions have been observed:

K
0
↔ K

0
D

0
↔ D

0
B

0
↔ B

0
B

0
s ↔ B

0
s (14.4)

The Feynman digram describing the transition K
0 ↔ K

0
is shown in figure 14.3. Note

that this is a second order weak process as two W bosons are exchanged. The internal
quarks can be any of the up-type quark, and need not be the same one on each side. The
rate of the mixing is proportional to the CKM matrix elements of the quarks involved
in the diagram. For example, the main contribution to neutral kaon mixing turns out
to be from from internal charm quarks, therefore the rate of mixing is proportional to
V

∗
cdVcs.
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Figure 14.3: A Feynman diagram illustrating the second order weak processing which
causes neutral meson mixing. Note that the rate of the mixing is proportional to the
CKM matrix elements, e.g. V

∗
cdVcs.

14.6.1 Mixing of Neutral Kaons

A state that is initially K
0 or K

0
will evolve as a function of time due to the mixing

diagram:

ψ(t) = a(t)|K0
�+ b(t)|K

0
� i

dψ

dt
= Ĥψ(t) (14.5)

where Ĥ is the effective Hamiltonian which can be written in terms of 2× 2 mass and
decay matrices M̂ and Γ̂:

Ĥ = M̂ −
i

2
Γ̂ =

�
M11 −

i

2Γ11 M12 −
i

2Γ12

M21 −
i

2Γ21 M22 −
i

2Γ22

�
(14.6)

The diagonal elements of these matrices are associated with flavour-conserving transi-
tions, while the off-diagonal elements are associated with the mixing transitions K

0 ↔

K
0
. Therefore the off-diagonal elements (M12, M21) are proportional to the CKM ma-

trix elements, such as V
∗
cdVcs.

The matrix Ĥ has two eigenvectors corresponding to the mass and weak decay eigen-
states known as KL and KS, K-long and K-short. The names are chosen as KL is
long-lived with a lifetime τL = 51 ns and KS has a much shorter lifetime of τS = 0.09 ns.

The eigenstates can be expressed as a linear superposition of K
0 and K

0
:

|KS� = p|K
0
�+ q|K

0
� |KL� = p|K

0
� − q|K

0
� (14.7)

where |q|2 + |p|2 = 1 and:
q

p
=

M
∗
12 −

i

2Γ
∗
12

M12 −
i

2Γ12
(14.8)

The differences in the masses and decay widths of the weak eigenstates. These are
measured to be:

∆mK = mL −mS = (3.52 ± 0.01)× 10−12 MeV = 0.529× 1010 s−1 (14.9)

∆ΓK =
1

τL
−

1

τS
= 1.1× 1010 s−1 (14.10)

58



Figure 14.4: Time evolution of an initial K
0 state.

The mass difference ∆mK is very small compared to the neutral kaon mass!

Suppose we start with a initial beam that is purely K
0 (ds̄). After a time t some of the

beam will have mixed (evolved) into K
0

(sd̄), and some of the beam will have decayed:
either as KL or as KS. The time evolution initial pure K

0 is given by:

|ψK0(t)|2 =
1

4

�
e
−ΓLt + e

−ΓSt + 2e−
(ΓL+ΓS)

2 t cos ∆mKt

�
(14.11)

|ψ
K

0(t)|2 =
1

4

�
e
−ΓLt + e

−ΓSt
− 2e−

(ΓL+ΓS)
2 t cos ∆mKt

�
(14.12)

This time evolution is shown in figure 14.4. Neutral meson mixing leads to flavour os-
cillations, with a frequency given by the mass difference between the weak eigenstates.
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15 Measuring CP Violation

15.1 CP Eigenstates of Kaons

Applying parity and charge conjugation to the K
0 and K

0
states gives:

P |K
0
� = −|K0

� P |K
0
� = −|K

0
� (15.1)

CP |K
0
� = −|K

0
� CP |K

0
� = −|K0� (15.2)

K
0 and K

0
are psudeoscalar mesons (see section 13.5), and therefore gain a minus sign

under parity. Charge conjugation changes d↔ d̄ and s↔ s̄.

The CP eigenstates of neutral kaons are called K1 and K2:

K1 =
1
√

2
[K0 + K

0
] K2 =

1
√

2
[K0

−K
0
] (15.3)

CP |K1� = +1 |K1� CP |K2� = −1 |K2� (15.4)

If CP is violated the weak decay eigenstates are not the same as the CP eigenstates,
we can write:

KL =
1

√
1 + �2

[�K1 + K2] KS =
1

√
1 + �2

[K1 − �K2] (15.5)

where � is a complex number.

As discussed above, the notation KL and KS refers to the long and short lifetimes:

τL = 5.2× 10−8 s τS = 0.9× 10−10 s (15.6)

15.1.1 CP Violation in K → 2π Decays

The neutral kaon decay into both two and three pion final states, these states have:

CP |π� = CP |π� = +1 (15.7)

CP |π+
π
−� = CP |π0

π
0� = +1 (15.8)

CP |π+
π
−
π

0� = CP |π0
π

0
π

0� = −1 (15.9)

If CP is conserved then the decays would be K1 → 2π and K2 → 3π, with K1 ≡ KS

and K2 ≡ KL.

The decay KL → π
+
π
− was first observed in 1964 was observed which violates CP .

The ratios of decays are written as:

η+− =
KL → π

+
π
−

KS → π+π− = � + �
� (15.10)

η00 =
KL → π

0
π

0

KS → π0π0
= �− 2�� (15.11)
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where the parameter �
� represents a “direct” CP violation where the K1 part of KL

decays directly to two pions.

The η have measured magnitudes and phases:

|η+−| = 2.286(14)× 10−3
φ+− = 43.4(7)◦ (15.12)

|η00| = 2.276(14)× 10−3
φ00 = 43.6(8)◦ (15.13)

From a comparison of the charged and neutral pion decays:

Re(��/�) = 1.67(26)× 10−3 (15.14)

15.1.2 CP and T Violation in Semileptonic Decays

In semileptonic decays the charge of the lepton is given by the charge of the W boson.
Thus a K

0 decay by an s̄→ ū transition gives an �
+, decay by an s→ u transition gives

an �
−. The charge of the lepton gives a flavour tag to the neutral kaon decay.

If there is no CP violation, the KL is an equal superposition of K
0 and K

0
, so it should

decay equally to �
+ and �

− with no charge asymmetry. If we add in the small amount
of CP violation �, then a charge asymmetry is predicted:

δSL =
Γ(KL → π

−
�
+
ν)− Γ(KL → π

+
�
−
ν̄)

Γ(KL → π−�+ν) + Γ(KL → π+�−ν̄)
(15.15)

δSL =
(1 + �)2 − (1− �)2

(1 + �)2 + (1− �)2
= 2Re(�) (15.16)

The experimental measurement of this asymmetry is:

δSL = 3.27(12)× 10−3 (15.17)

There is another elegant measurement that can be made with semileptonic decays that
explicitly demonstrates time-reversal violation. We start with a pure K

0 or K
0

state,
and let it oscillate and then decay semileptonically. The T violation is observable as a
rate asymmetry:

Γ(K0
→ K

0
→ π

+
�
−
ν̄) �= Γ(K

0
→ K

0
→ π

−
�
+
ν) (15.18)

The amount of T violation corresponds to the amount of CP violation, so CPT sym-
metry is preserved. A direct test of CPT violation in semileptonic decays would be:

Γ(K
0
→ π

+
�
−
ν̄) �= Γ(K0

→ π
−
�
+
ν) (15.19)

The bounds on a CPT violating parameter δCPT in neutral kaon decays are actually
only one order of magnitude below �:

δCPT = (2.9 ± 2.7)× 10−4 (15.20)
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Figure 15.1: Feynman diagrams illustrating B
0 ↔ B

0
and B

0
s ↔ B

0
s mixing.

15.1.3 Mixing of B mesons

A similar mixing occurs with neutral B-mesons: B
0 (also called B

0
d, db̄) and B

0
s (sd̄),

as illustrated in figure 15.1.

They are expected to mix in a similar way to the K
0 states, but in this case the mixing

diagram is dominated by the top quark, and the off-diagonal elements of the mixing
matrix (equation (14.6)) are given by:

M12 ∝ (VtbV
∗
td)

2 q

p
=

V
∗
tbVtd

VtbV
∗
td

(15.21)

Oscillations of B
0 mesons have been observed with:

∆md = 0.508(4) ps−1
τB

0
d

= 1.53(1) ps (15.22)

Bs oscillations were first observed at the Tevatron collider near Chicago in 2006 using
an amplitude scan to Fourier analyse their Bs decays. They measured:

∆ms = 17.8(1) ps−1
τBs = 1.47(6) ps (15.23)

Note the much larger oscillation frequency which makes the direct observation of the
oscillations difficult, although it should be possible at the LHC.

From the ratio of the two oscillation frequencies it is possible to determine:

����
Vtd

Vts

���� = 0.206(1) (15.24)

The main uncertainty in this ratio is now coming from the theoretical calculation of the
hadronic properties of B mesons, the decay constants fB and the “bag” constants BB.
It should be noted that most of the uncertainties cancel in the ratio, and the individual
determinations of |Vtd| and |Vts| have theoretical errors which are ×10 larger.
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15.2 General Formalism for CP violation*

There is an excellent review of CP violation in the Particle Data Group compilation at
http://pdg.lbl.gov/2011/reviews/rpp2011-rev-cp-violation.pdf.

In a more general notation the weak eigenstates are labelled ML and MH (for light and
heavy mass), and are not assumed to be the same as the CP eigenstates:

ML = pM
0 + qM̄

0
MH = pM

0
− qM̄

0 (15.25)

with the normalisation |p|2 + |q|2 = 1.

We use the following notation for the mass and decay width differences:

∆m = MH −ML ∆Γ = ΓH − ΓL (15.26)

Γ =
ΓH + ΓL

2
x =

∆m

Γ
y =

∆Γ

Γ
(15.27)

The amplitudes for the decays of the flavour eigenstates M
0 and M̄

0 to a final state f

or f̄ , are written as A and Ā. If the final state is a CP eigenstate f = f̄ , but A and Ā

are not necessarily equal.

The time dependent decay rates of the flavour eigenstates to a CP eigenstate M
0 → f

and M̄
0 → f , are given in the most general form by:

dΓ

dt
= e

−Γt [α cosh(∆Γt) + β cos(∆mt) + 2Re[γ] sinh(∆Γt)− 2Im[γ] sin(∆mt)] (15.28)

α = |A|
2 + |

q

p
Ā|

2
β = |A|

2
− |

q

p
Ā|

2
γ =

q

p
A

∗
Ā (15.29)

dΓ̄

dt
= e

−Γt
�
ᾱ cosh(∆Γt)− β̄ cos(∆mt) + 2Re[γ̄] sinh(∆Γt) + 2Im[γ̄] sin(∆mt)

�

(15.30)

ᾱ = |
p

q
A|

2 + |Ā|
2

β̄ = |
p

q
A|

2
− |Ā|

2
γ̄ =

p

q
AĀ

∗ (15.31)

Note the changes in sign of the second and fourth terms in the decay rates.

The sin and cos terms give the mixing oscillations with frequency ∆m. The amplitudes
of these oscillations depend on γ, and include a possible CP violation through mixing.

15.3 Types of CP violation

There are three types of CP violation that can be observed:

• CP violation in the mixing amplitude, due to the mass eigenstates being different
from the CP eigenstates, |q/p| �= 1.
In the neutral kaon system this is represented by the semileptonic charge asym-
metry δSL.
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• CP violation in the amplitudes A and Ā for decays to a particular final state,
|A/Ā| �= 1 and phase differences between them. This is commonly known as
direct CP violation. It does not require mixing, and can be found in both
charged and neutral meson decays.
In the decays KL,S → 2π it is represented by �

�.

• CP violation in the interference between mixing and decay amplitudes, which
requires an overall weak phase Im[λ] �= 0, where λ = qĀ/pA.
In the decays KL,S → 2π it is represented by �.

15.4 The CKM Matrix Revisited

Recall that the CKM matrix describes the difference between the mass and decay
eigenstates of the down-type quarks:




d�

s�

b�



 =




Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb








d
s
b



 (15.32)

To ensure that the number of quarks is conserved, the CKM matrix must be unitary,
that is V

†
CKMVCKM = 1, or:




V

∗
ud V

∗
cd V

∗
td

V
∗
us V

∗
cs V

∗
ts

V
∗
ub V

∗
cb V

∗
tb








Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb



 =




1 0 0
0 1 0
0 0 1



 (15.33)

This implies nine unitarity relations, e.g. the most important one is:

VudV
∗
ub + VtdV

∗
tb + VcdV

∗
cb = 0 (15.34)

As the elements of the matrix are simply complex numbers, equation (15.34) represents
a triangle in the complex plane, as shown in figure 15.2. The angles and the sides of
the triangle represent different combinations of CKM matrix elements. Notes that the
triangle will only have a non-zero area if there is a relative complex phase between each
of the sides.

Looking at the right-hand side of figure 15.2, the lengths of the sides are:
����
VudV

∗
ub

VcdV
∗
cb

����

����
VtdV

∗
tb

VcdV
∗
cb

���� (15.35)

and the angles are:

α ≡ arg

�
−

VtdV
∗
tb

VudV
∗
ub

�
β ≡ arg

�
−

VcdV
∗
cb

VtdV
∗
tb

�
γ ≡ arg

�
−

VudV
∗
ub

VcdV
∗
cb

�
(15.36)

This unitarity triangle is often use to present measurements of CP violation in B-meson
decay. A summary of the measured constraints on the lengths is shown in figure 15.3.
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Figure 1-2. The rescaled Unitarity Triangle, all sides divided by .

The rescaled Unitarity Triangle (Fig. 1-2) is derived from (1.82) by (a) choosing a phase convention
such that is real, and (b) dividing the lengths of all sides by ; (a) aligns one side
of the triangle with the real axis, and (b) makes the length of this side 1. The form of the triangle
is unchanged. Two vertices of the rescaled Unitarity Triangle are thus fixed at (0,0) and (1,0). The
coordinates of the remaining vertex are denoted by . It is customary these days to express the
CKM-matrix in terms of four Wolfenstein parameters with playing
the role of an expansion parameter and representing the -violating phase [27]:

(1.83)

is small, and for each element in , the expansion parameter is actually . Hence it is sufficient
to keep only the first few terms in this expansion. The relation between the parameters of (1.78)
and (1.83) is given by

(1.84)

This specifies the higher order terms in (1.83).
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Figure 15.2: Illustration of the unitarity triangle. Left: equation (15.34); right: Dividing
through by VcdV

∗
cb.

dm

K

K
sm & dm

ubV

sin 2
(excl. at CL > 0.95)

 < 0sol. w/ cos 2

-0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ex
cl

ud
ed

 a
re

a 
ha

s 
C

L 
> 

0.
95

Summer 11

CKM
f i t t e r

Figure 15.3: Fit of all relevant experimental data to the unitarity triangle paramters.
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15.5 The Wolfenstein Parameterisation of the CKM Matrix

The Wolfenstein Parameterisation is an expansion of the CKM matrix in powers of a
parameter λ = Vus ≈ 0.22:

VCKM =




1− λ

2
/2 λ Aλ

3(ρ− iη)
−λ 1− λ

2
/2 Aλ

2

Aλ
3(1− ρ− iη) −Aλ

2 1



 + O(λ4) (15.37)

The parameterisation reflects almost diagonal nature of CKM matrix:

• The diagonal elements Vud, Vcs, Vtb are close to 1.

• The elements Vus, Vcd ∼ λ are equal.

• The elements Vcb, Vts ∼ λ
2 are equal.

• The elements Vub, Vtd ∼ λ
3 are very small.

The diagonal structure means down quark mass eigenstate is almost equal to down
quark weak eigenstate similarly for strange and bottom mass eigenstates Note that the
complex phase η only appears in the very small elements, and is thus hard to measure.

15.6 CP Violation in B Meson Decays

All three types are CP violation are expected to occur in the decays of neutral B mesons.
Due to the dominance of the t quark contribution inside mixing and penguin diagrams,
and the presence of the suppressed CKM couplings Vub and Vtd, measurements of CP

violation in B decays provide important additional information compared to the neutral
kaon system.

15.6.1 B
0 → J/ψKS and sin 2β*

CP violation through interference between mixing and decay amplitudes was first ob-
served in the decay B

0 → J/ψKS in 2001 by the BaBar and Belle experiments. For
this decay:

λ =
qĀf

pAf

=

�
V

∗
tbVtd

VtbV
∗
td

� �
V

∗
csVcb

VcsV
∗
cb

� �
V

∗
csVcd

VcsV
∗
cd

�
(15.38)

where the three set of CKM factors respectively account for B
0 mixing, the B → J/ψKS

decay amplitude and final state K
0 mixing.

15.6.2 B
0 → ππ, B

0 → ρρ and the angle α*

A similar measurement of time-dependent CP asymmetries can be made with the rare
hadronic final states B

0 → π
+
π
− and B

0 → ρ
+
ρ
−. In this case the decay amplitude is
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proportional to Vub, and the angle α is measured which is the complex phase between
Vtd and Vub in the Standard Model.

The BaBar experiment obtains α = (96 ± 6)◦ from a fit to B → ρρ decays where the
penguin diagram has a much smaller effect.

15.6.3 Direct CP violation in B → Kπ*

In 2004 the BaBar and Belle experiments made the first observation of a direct CP

violation in the decay amplitudes for B
0 → Kπ decays:

ACP =
Γ(B̄0 → K

−
π

+)− Γ(B0 → K
+
π
−)

Γ(B̄0 → K−π+)− Γ(B0 → K+π−)
(15.39)

The latest world average for this is ACP = −0.10 ± 0.01.

15.7 CP Violation in D mesons

CP violation in D-mesons (mesons containing one charm quark) was observed for the
first time in 2011 by the LHCb collaboration at CERN.

The collaboration measured the CP asymmetry between decays of D
0 and D

0
mesons

to kaons and pions:

ACP =
Γ(D0 → K

+
K

−)− Γ(D
0
→ K

+
K

−)

Γ(D0 → K+K−) + Γ(D
0
→ K+K−)

−
Γ(D0 → π

+
π
−)− Γ(D

0
→ π

+
π
−)

Γ(D0 → π+π−) + Γ(D
0
→ π+π−)

(15.40)
The measured asymmetry was: ACP = [−0.82 ± 0.21(stat) ± 0.11(syst)]%, a clear

difference between the behaviour of D
0 and D

0
mesons is observed!
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