## SH/IM Particle Physics - Introductory Quiz, with Answers!

1. What are the allowed spin states of an electron?

Spin up $\left(m_{s}=+1 / 2 \hbar\right)$ and spin down $\left(m_{s}=-1 / 2 \hbar\right)$.
2. List the quarks and leptons in the Standard Model. Give the electric charge, $\boldsymbol{Q}$, and spin, $S$, of each one.

| down quark, $\mathbf{d}$ | $\boldsymbol{Q}=-1 / 3$ | $\boldsymbol{S}=1 / 2$ | All charges in units in the electron charge, $\|e\|$ |
| :--- | :--- | :--- | :--- |
| up quark, $\mathbf{u}$ | $\boldsymbol{Q}=+2 / 3$ | $\boldsymbol{S}=1 / 2$ |  |
| strange quark, $\mathbf{s}$ | $\boldsymbol{Q}=-1 / 3$ | $\boldsymbol{S}=1 / 2$ |  |
| charm quark, $\mathbf{c}$ | $\boldsymbol{Q}=+2 / 3$ | $\boldsymbol{S}=1 / 2$ |  |
| bottom quark, $\mathbf{b}$ | $\boldsymbol{Q}=-1 / 3$ | $\boldsymbol{S}=1 / 2$ |  |
| top quark, t | $\boldsymbol{Q}=+2 / 3$ | $\boldsymbol{S}=1 / 2$ |  |
|  |  |  |  |
| electron, $\mathbf{e}^{-}$ | $\boldsymbol{Q}=-1$ | $\boldsymbol{S}=1 / 2$ |  |
| muon, $\boldsymbol{\mu}^{-}$ | $\boldsymbol{Q}=-1$ | $\boldsymbol{S}=1 / 2$ |  |
| tau, $\mathbf{T}^{-}$ | $\boldsymbol{Q}=-1$ | $\boldsymbol{S}=1 / 2$ |  |
| electron neutrino, $\mathbf{v}_{\mathbf{e}} \boldsymbol{Q}=0$ | $\boldsymbol{S}=1 / 2$ |  |  |
| muon neutrino, $\mathbf{v}_{\boldsymbol{\mu}}$ | $\boldsymbol{Q}=0$ | $\boldsymbol{S}=1 / 2$ |  |
| tau neutrino, $\mathbf{v}_{\boldsymbol{T}}$ | $\boldsymbol{Q}=0$ | $\boldsymbol{S}=1 / 2$ |  |

3. List the forces present in the Standard Model, with the associated boson(s). Give the electric charge, $\boldsymbol{Q}$, and spin, $\boldsymbol{S}$, of each boson.

| Force | Boson | Charge | Spin |
| :--- | :--- | :--- | :--- |
| Strong | Gluon, $\mathbf{g}$ |  |  |
| Electromagnetic | Photon, $\boldsymbol{\gamma}$ |  | $\boldsymbol{Q}=0$ |
| Weak | W-boson, $\boldsymbol{W}^{ \pm}$ |  | $\boldsymbol{Q}= \pm 1$ |
| " | Z-boson, $\boldsymbol{Z}^{0}$ | $\boldsymbol{S}=1$ |  |
|  |  | $\boldsymbol{Q}=0$ | $\boldsymbol{S}=1$ |

Gravity isn't part of the Standard Model. But for this question it's not unreasonable to list it too.

Gravity $\quad$ graviton $\quad \boldsymbol{Q}=0 \quad \boldsymbol{S}=2$
4. Write down the components of the four momentum of a particle, $\boldsymbol{p}^{\mu}$.
$\boldsymbol{p}^{\mu}=\left(\boldsymbol{E} / \boldsymbol{c}, \boldsymbol{p}_{x}, \boldsymbol{p}_{y}, \boldsymbol{p}_{z}\right)=(\boldsymbol{E} / \boldsymbol{c}, \boldsymbol{p})$ or in natural units: $\boldsymbol{p}^{\mu}=\left(\boldsymbol{E}, \boldsymbol{p}_{x}, \boldsymbol{p}_{y}, \boldsymbol{p}_{z}\right)=(\boldsymbol{E}, \boldsymbol{p})$
Where $\boldsymbol{p}$ is the three vector.
The ${ }^{\mu}$ is used to refer to the element of the four vector: $\boldsymbol{p}^{\mathbf{0}}=\boldsymbol{E}, \boldsymbol{p}^{\mathbf{1}}=\boldsymbol{p}_{\boldsymbol{x}}, \boldsymbol{p}^{\mathbf{2}}=\boldsymbol{p}_{\boldsymbol{y}}, \boldsymbol{p}^{\mathbf{3}}=\boldsymbol{p}_{z}$
5. What is the relativistic relationship between mass, $\boldsymbol{m}$, energy, $\boldsymbol{E}$ and three-momentum, p?

$$
\boldsymbol{E}^{2}=\boldsymbol{p}^{2} \boldsymbol{c}^{2}+\boldsymbol{m}^{2} \boldsymbol{c}^{4} \text { or in natural units: } \boldsymbol{E}^{2}=\boldsymbol{p}^{2}+\boldsymbol{m}^{2}
$$

6. Write down the definition of the scalar product of two four momenta, $\boldsymbol{p}_{a}$ and $\boldsymbol{p}_{b}$.

$$
\begin{aligned}
p_{a} \cdot p_{b} & =p_{a}{ }^{0} p_{b}{ }^{0}-\left(p_{a}{ }^{1} p_{b}{ }^{1}+p_{a}{ }^{2} p_{b}{ }^{2}+p_{a}{ }^{3} p_{b}{ }^{3}\right) \\
& =E_{a} E_{b} / c^{2}-\left(p_{x, a} p_{x, b}+p_{y, a} p_{y, b}+p_{z, a} p_{z, b}\right) \\
& =E_{a} E_{b} / c^{2}-\underline{p_{a}} \cdot \underline{p_{b}}
\end{aligned}
$$

Where $\boldsymbol{p}$ are the three vectors.
In natural units: $\boldsymbol{p}_{\boldsymbol{a}} \cdot \boldsymbol{p}_{\boldsymbol{b}}=\boldsymbol{E}_{a} \boldsymbol{E}_{\boldsymbol{b}}-\underline{\boldsymbol{p}_{a}} \cdot \underline{\boldsymbol{p}_{\boldsymbol{b}}}$
7. Draw a Feynman diagram illustrating $\boldsymbol{e}^{+} \boldsymbol{e}^{-} \rightarrow \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-}$scattering.


These diagrams are drawn with the time axis going from left to right. This process can be either electromagnetic or weak. The boson, represented by the wavy line, is a photon or a Z-boson.

Note that the electron/positron line is continuos and the muon/anti-muon line is continuous. This reflects the conservation of electron number and the conservation of muon number

A common, illustrated, mistake was to draw the electron line turning into a muon with $\boldsymbol{e}^{-} \rightarrow \boldsymbol{\mu}^{-} \gamma$ and $\gamma \boldsymbol{e}^{+} \rightarrow \boldsymbol{\mu}^{+}$. This would violate electron and muon number conservation.
8. What is the cross section of a process?

The cross section, usually written as $\sigma$, is a measure of how often a scattering process occurs. It is measured in units of area. (See chapter 8 of Dynamics and Relativity.)
9. What is the branching ratio of a process?

The branching ratio, often written as BR, is the fraction of decays of a given particle to a given final state. It is often expressed as a percentage.

As an example:

$$
\operatorname{BR}\left(Z \rightarrow e^{+} e^{-}\right)=\frac{\Gamma\left(Z \rightarrow e^{+} e^{-}\right)}{\Gamma_{Z}}=\frac{\text { Number of } Z \text {-boson decays into } e^{+} e^{-}}{\text {Total number of } Z \text {-boson decays }}
$$

