SH/IM Particle Physics - Introductory Quiz, with Answers!

1. What are the allowed spin states of an electron?

Spin up ($m_s = + \frac{1}{2}\hbar$) and spin down ($m_s = -\frac{1}{2}\hbar$).

2. List the quarks and leptons in the Standard Model. Give the electric charge, Q, and spin, S, of each one.

All charges in units in the electron charge, |e|

down quark, d	$Q = -\frac{1}{3}$	$S = \frac{1}{2}$
up quark, u	$Q = +^2/_3$	$S = \frac{1}{2}$
strange quark, s	$Q = -\frac{1}{3}$	$S = \frac{1}{2}$
charm quark, c	$Q = +2/_3$	$S = \frac{1}{2}$
bottom quark, b	$Q = -\frac{1}{3}$	$S = \frac{1}{2}$
top quark, t	$Q = +2/_3$	$S = \frac{1}{2}$
electron, e ⁻	Q = -1	$S = \frac{1}{2}$
electron, e ⁻ muon, μ ⁻	Q = -1 Q = -1	$S = \frac{1}{2}$ $S = \frac{1}{2}$
electron, e ⁻ muon, μ ⁻ tau, τ ⁻	Q = -1 $Q = -1$ $Q = -1$	$S = \frac{1}{2}$ $S = \frac{1}{2}$ $S = \frac{1}{2}$
electron, e ⁻ muon, μ ⁻ tau, τ ⁻ electron neutrino, v _e	Q = -1 $Q = -1$ $Q = -1$ $Q = 0$	$S = \frac{1}{2}$ $S = \frac{1}{2}$ $S = \frac{1}{2}$ $S = \frac{1}{2}$
electron, e^- muon, μ^- tau, τ^- electron neutrino, v_e muon neutrino, v_{μ}	Q = -1 Q = -1 Q = 0 Q = 0	$S = \frac{1}{2}$ $S = \frac{1}{2}$ $S = \frac{1}{2}$ $S = \frac{1}{2}$ $S = \frac{1}{2}$

3. List the forces present in the Standard Model, with the associated boson(s). Give the electric charge, Q, and spin, S, of each boson.

Force	<u>Boson</u>	<u>Charge</u>	<u>Spin</u>
Strong	Gluon, g	$\boldsymbol{Q}=0$	S = 1
Electromagnetic	Photon, γ	Q = 0	S = 1
Weak	W-boson, ₩±	$Q = \pm 1$	S = 1
"	Z-boson, Z ⁰	$\boldsymbol{Q}=0$	S = 1

Gravity isn't part of the Standard Model. But for this question it's not unreasonable to list it too.

```
Gravity graviton Q = 0 S = 2
```

4. Write down the components of the four momentum of a particle, p^{μ} .

$$p^{\mu} = (E/c, p_x, p_y, p_z) = (E/c, p)$$
 or in natural units: $p^{\mu} = (E, p_x, p_y, p_z) = (E, p)$

Where \underline{p} is the three vector.

The " is used to refer to the element of the four vector: $p^0 = E$, $p^1 = p_x$, $p^2 = p_y$, $p^3 = p_z$

5. What is the relativistic relationship between mass, m, energy, E and three-momentum, p?

 $E^2 = p^2 c^2 + m^2 c^4$ or in natural units: $E^2 = p^2 + m^2$

6. Write down the definition of the scalar product of two four momenta, p_a and p_b .

$$p_a \cdot p_b = p_a^0 p_b^0 - (p_a^1 p_b^1 + p_a^2 p_b^2 + p_a^3 p_b^3)$$

= $E_a E_b / c^2 - (p_{x,a} p_{x,b} + p_{y,a} p_{y,b} + p_{z,a} p_{z,b})$
= $E_a E_b / c^2 - \underline{p_a} \cdot \underline{p_b}$

Where \underline{p} are the three vectors.

In natural units: $p_a \cdot p_b = E_a E_b - \underline{p_a} \cdot \underline{p_b}$

7. Draw a Feynman diagram illustrating $e^+e^- \rightarrow \mu^+\mu^-$ scattering.

These diagrams are drawn with the time axis going from left to right. This process can be either electromagnetic or weak. The boson, represented by the wavy line, is a photon or a *Z*-boson.

Note that the electron/positron line is continuos and the muon/anti-muon line is continuous. This reflects the conservation of electron number and the conservation of muon number

A common, illustrated, mistake was to draw the electron line turning into a muon with $e^- \rightarrow \mu^- \gamma$ and $\gamma e^+ \rightarrow \mu^+$. This would violate electron and muon number conservation.

8. What is the cross section of a process?

The *cross section*, usually written as σ , is a measure of how often a **scattering** process occurs. It is measured in units of area. (See chapter 8 of Dynamics and Relativity.)

9. What is the branching ratio of a process?

The branching ratio, often written as **BR**, is the fraction of decays of a given particle to a given final state. It is often expressed as a percentage.

As an example:

$$BR(Z \to e^+e^-) = \frac{\Gamma(Z \to e^+e^-)}{\Gamma_Z} = \frac{\text{Number of } Z\text{-boson decays into } e^+e^-}{\text{Total number of } Z\text{-boson decays}}$$