Particle Physics

Dr Victoria Martin, Prof Steve Playfer Spring Semester 2013 Lecture 13: Hadron Decays

★Decays of Hadrons
★Selection Rules
★Weak decays of light hadrons
★CKM matrix
★Neutral Meson Mixing

Decays of Hadrons

- The proton is the only completely stable hadron
- The free neutron has a weak decay ($\tau \sim 15 \text{ mins}$)
- **Decay length** of a particle is the distance it travels before decaying $L = \beta \gamma c \tau$

Force	Typical τ (s)		
QCD	10^{-20} - 10^{-23}		
QED	10⁻²⁰ - 10⁻¹⁶		
Weak	$10^{-13} - 10^3$		

- π^{\pm} , K^{\pm} , K_L^0 mesons are long-lived ($\tau \sim 10 \text{ ns}$) and have weak decays
 - \rightarrow Live long enough to travel outside radii of collider detectors ($L \sim 10 \text{ m}$)
- K_{S^0} mesons and Λ^0 hyperons are less long-lived ($\tau \sim 100 \text{ ps}$) and have weak decays with decay lengths of $L \sim \text{cm}$ which are inside collider detectors
- $\pi^0 \rightarrow \gamma\gamma$, $\eta \rightarrow \gamma\gamma$ are electromagnetic decays, reconstructed from pairs of photons
- ρ , ω , ϕ , K^* , Δ , Σ^* , Ξ^* are resonances with strong decays.

Reconstructed as broad structures with widths Γ ~100 MeV.

Decay Conservation Laws

- Relevant quantum numbers are:
 - strong isospin (*I*, *I*₃)
 - parity (**P**)
 - quark flavour: described using strangeness (S=N(s)-N(s)), charm (C=N(c)-N(c)), beauty (B=N(b)-N(b))
 - Baryon number and lepton numbers are always conserved!

	baryon number	Strong Isospin, <i>I</i>	Strong Isospin, <i>I</i> 3	Flavour, <i>S, C, B</i>	Parity, P
Strong	Y	Y	Y	Y	Y
EM	Y	Ν	Y	Y	Y
Weak	Y	Ν	Ν	Ν	Ν

Decays of Charmonium

- The J/ ψ meson is a c c state. It must decay to particles without charm quarks as M(J/ ψ) < 2 M(D).
- Two options: decay via three gluons or one photon.

- Strong rate is suppressed by $\alpha_{S^6}(q_{gluon})$. This is comparable to α^2 for EM decay
 - Both strong and electromagnetic final states have large branching ratios.
- The J/ ψ meson lives for a relatively long time, giving rise to narrow resonance in e.g. $e^+e^- \rightarrow hadrons$.

• Similar phenomena occur in decays of $s \overline{s}$ and $b\overline{b}$ mesons.

Charged Pion Decay

- See problem sheet 1
- π^+ consists of $\mathbf{u}\overline{\mathbf{d}}$, lightest charged meson
- Decays via weak force to change quark flavour u->d

 $\tau(\pi^+) = 26 \text{ ns}$

- → CKM matrix element factor V_{ud}.
- → Hadronic decay constant $f_{\pi} \sim m_{\pi}$ to account for finite size of pion

$$e^{\frac{u}{\bar{d}}} \xrightarrow{\mu^+} \nu_{\mu^+}$$

Charged Kaon Decays

- Charged kaon is \overline{s} u with $m_K = 498$ MeV
- lightest mesons containing strange quarks ⇒ must decay by weak force

 $\tau(K^{\pm}) = 12 \text{ ns}$

- Leptonic decays
 - BR(K⁺ $\rightarrow \mu^+ \nu_{\mu}) = 63\%$
 - Kaon decay constant, *f_K*=160 MeV
 - *V*us = 0.22 (Cabibbo angle)
- Semileptonic decays
 - BR(K⁺ $\rightarrow \pi^0 \mu^+ \nu_\mu$) = 3.8%
 - BR(K⁺ $\rightarrow \pi^0 e^+ v_e$) = 5.1%
- Hadronic Decays
 - BR(K⁺ $\rightarrow \pi^0 \pi^+$) = 21 %
 - BR(K⁺ $\rightarrow \pi^{+}\pi^{-}\pi^{-}) = 5.6\%$

Cabibbo-Kobayashi-Maskawa Matrix

- Mass eigenstates and weak eigenstates of quarks are not identical.
 - Decay properties measure mass eigenstates with a definite lifetime and decay width
 - The weak force acts on the weak eigenstates.
- Weak eigenstates are admixture of mass eigenstates, conventionally described using CKM matrix to mix the down-type quarks:

weak
eigenstates
$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$
 mass
eigenstates

- e.g. weak eigenstate of the strange quark is a mixture between down, strange and bottom mass eigenstates $s' = V_{cd}d + V_{cs}s + V_{cb}b$
- The CKM matrix is unitary, $V_{CKM}^{\dagger}V_{CKM} = 1$; standard parameterisation in terms of three mixing angles (θ_1 , θ_2 , θ_3) and one complex phase (δ) is:

 $\begin{pmatrix} \cos\theta_1 & \sin\theta_1\cos\theta_3 & \sin\theta_1\sin\theta_3 \\ -\sin\theta_1\cos\theta_3 & \cos\theta_1\cos\theta_2\cos\theta_3 - \sin\theta_2\sin\theta_3e^{i\delta} & \cos\theta_1\cos\theta_2\sin\theta_3 + \sin\theta_2\cos\theta_3e^{i\delta} \\ \sin\theta_1\sin\theta_2 & -\cos\theta_1\sin\theta_2\cos\theta_3 - \cos\theta_2\sin\theta_3e^{i\delta} & -\cos\theta_1\sin\theta_2\sin\theta_3 + \cos\theta_2\cos\theta_3e^{i\delta} \end{pmatrix}$

Nobel Prize in Physics 2008

- Awarded to Makoto Kobayashi, High Energy Accelerator Research Organization (KEK), Tsukuba, Japan and Toshihide Maskawa, Yukawa Institute for Theoretical Physics (YITP), Kyoto University, and Kyoto Sangyo University, Japan
- "for the discovery of the origin of the broken symmetry which predicts the existence of at least three families of quarks in nature"

Experimental Measurements of CKM Matrix

- Many measurements made by the BaBar and Belle experiments.
- Both study $e^+e^- \rightarrow \Upsilon^{(4_s)} \rightarrow B^0 \overline{B}^0$ to measure the decays of **b** and **c** quarks, e.g. V_{cb} and V_{ub}

The Wolfenstein Parameterisation

• An expansion of the CKM matrix in powers of $\lambda = V_{us} = 0.22$

$$V_{\rm CKM} = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$$

• Parameterisation reflects almost diagonal nature of CKM matrix:

- The diagonal elements V_{ud} , V_{cs} , V_{tb} are close to 1
- Elements V_{us} , $V_{cd} \sim \lambda$ are equal and measure λ

Elements $V_{\rm cb}$, $V_{\rm ts} \sim \lambda^2$ are equal and measure A

Elements $V_{\rm ub}$, $V_{\rm td} \sim \lambda^3$ are very small

• Note that the parameter ρ and the complex phase η only appear in the very small elements V_{ub} and V_{td}, and are thus hard to measure.

Flavour Changing Neutral Currents

- At 1st order, there are no allowed transitions between quarks of the same charge, e.g. $s \leftrightarrow d$, $c \leftrightarrow u$, $b \leftrightarrow s$, $b \leftrightarrow d$
- Weak neutral current (the Z boson) does not change the flavour of fermions.
- At 2nd order so-called "Penguin Diagrams" can cause transitions such as $b \leftrightarrow s$
 - e.g. b \rightarrow s s s s, $B^0 \rightarrow \phi K^0$

 $B^0 \rightarrow J/\psi K^0$

Neutral Meson Mixing

• Second order weak interactions mix longlived neutral mesons with their antiparticles:

 $K^0(\overline{s} d), D^0(\overline{c} u), B^0(\overline{b} d), B_s(\overline{b} s)$

$$\stackrel{\bullet}{\longrightarrow} K^0 \leftrightarrow \overline{K}{}^0 D^0 \leftrightarrow \overline{D}{}^0 B^0 \leftrightarrow \overline{B}{}^0 B_s \leftrightarrow \overline{B}{}_s$$

Observed particles (weak decay eigenstates) are mixtures of flavour eigenstates:

 $K_{\rm S} = 1/\sqrt{2} (K^0 + \bar{K}^0)$ with $\tau_{\rm S} = 0.09$ ns $K_{\rm L} = 1/\sqrt{2} (K^0 - \bar{K}^0)$ with $\tau_{\rm L} = 51$ ns

Mass difference $\Delta m_K = m_L - m_S = 3.52(1) \text{ x}10^{-12} \text{ MeV} = 0.53 \text{ x} 10^{-10} \text{ s}^{-1}$

This is the oscillation frequency of the mixing

More about this next week, when we talk about CP violation

CKM Fit

• Many measurements, including results from BaBar, Belle, Tevatron and LHCb experiments. Semileptonic b->u decays, penguin diagrams, neutral meson mixing and CP violation are used to find best values for η and ρ parameters in Wolfenstein parameterisation.

Summary: Decays of Hadrons

- Strong decays are characterised by very short lifetimes, $\tau \sim 10^{-20}$ 10^{-23} s appearing as resonances with a large width $\Gamma \sim MeV$.
 - Final states are hadronic. All quantum numbers are conserved.
- Electromagnetic decays are characterised by $\tau \sim 10^{-20}$ 10^{-16} s.
 - Decays containing photons are electromagnetic.
 - \rightarrow All quantum numbers conserved except total isospin, *I*.
- Weak decays characterised by long lifetimes, $\tau \sim 10^{-13}$ 10^3 s.
 - Only decays that allow change of quark flavour (including s, c, b decays).
 - Responsible for most light meson and baryon decays.
 - Particles can live long enough to reach the detector.
 - Final states may be leptonic, semi-leptonic or hadronic.
 - \rightarrow Strong Isospin, *I*, *I*₃, Parity, *P*, Flavour quantum numbers not conserved.
 - CKM matrix relates the quark mass eigenstates to the weak eigenstates
 - Non-diagonal: mixes quark flavours. Off-diagonal elements get smaller.
 - Allows higher order penguin diagrams, and neutral meson mixing.
 - Contains four free parameters, including a complex phase (leads to CP violation).