Particle Physics

Dr Victoria Martin, Spring Semester 2013 Lecture 15: Measuring *CP* Violation

Mixing and decays of kaons
CKM Matrix revisited
The unitarity triangle

Reminder: Guest Seminars

• From Edinburgh University researchers on their work.

- Monday (18th March) in tutorial:
 - Guest seminar from Dr Greig Cowan on B-physics at LHCb
- Following Monday (25th March) in tutorial
 - Guest seminar from Dr Wahid Bhimji on Higgs physics at ATLAS

Parity Violation in Pion Decays

- Consider charged pion decay at rest, $\pi^- \rightarrow \mu^- + \overline{\nu_{\mu}}$
- Charged pion has S = 0
 - muon and neutrino produced with equal & opposite spin
 - The muon and neutrino will have identical helicities

$$\hat{h} = \frac{\vec{\sigma} \cdot \vec{p}}{|\vec{p}|}$$

 \overline{V}_{μ}

chirality: LH

 $\longrightarrow \mu^{-}$

- Experiments observe muon helicity is always righthanded
- Conclusion: Only right-handed anti-neutrinos exist!
- Similarly for $\pi^+ \rightarrow \mu^+ + \nu_{\mu}$ anti-muon helicity is always left-handed
 - only left-handed neutrinos exist!
- This observation also explains why $\pi^- \rightarrow \mu^- + \overline{v}_{\mu}$ is preferred over $\pi^- \rightarrow e^- + \overline{v}_e$
 - Weak force decay produces particles with left handed chirality and antiparticles with right handed chirality
 - \rightarrow The amount of LH chiral in a RH helicity state is related to β of the lepton. In terms of lepton (ℓ) mass: \propto

$$m_{\pi} + m_{\ell}$$

Neutrino States

Parity changes the direction of momentum, but not spin: Left handed helicity \rightarrow right handed helicity

Charge conjugation changes the sign of all charges: particle \rightarrow anti-particle

The existence of the $v_{\rm L}$ and $\overline{v}_{\rm R}$ suggests that *CP* is a good symmetry in the weak interaction

From Last Lecture: Summary

- Parity *P* and Charge Conjugation *C* are maximally violated in weak interactions due to vector – axial vector structure of interaction vertex.
 - Conserved in strong and electromagnetic interactions.
- The combined symmetry *CP* describes the difference between matter and anti-matter
 - The existence of only LH neutrinos and RH anti-neutrinos suggest *CP* is good symmetry in the weak force.
- *CPT* symmetry must be conserved... it's one of the foundations of QM and field theory!

Neutral Meson Mixing

- Second order weak interactions can mix long-lived neutral mesons with their antiparticles:
 - $\stackrel{\bullet}{\rightarrow} K^{0}(\overline{s} d), D^{0}(\overline{c} u), B^{0}(\overline{b} d), B_{s}(\overline{b} s) \qquad K^{0} \leftrightarrow \overline{K}^{0} D^{0} \leftrightarrow \overline{D}^{0} B^{0} \leftrightarrow \overline{B}^{0} B_{s} \leftrightarrow \overline{B}_{s}$

- e.g. take the neutral kaons $\mathbf{K}^{0} \& \overline{\mathbf{K}}^{0}$ as an example: $P |\mathbf{K}^{0}\rangle = -|\mathbf{K}^{0}\rangle \qquad P |\overline{\mathbf{K}}^{0}\rangle = -|\overline{\mathbf{K}}^{0}\rangle$ $CP |\mathbf{K}^{0}\rangle = -|\overline{\mathbf{K}}^{0}\rangle \qquad CP |\overline{\mathbf{K}}^{0}\rangle = -|\mathbf{K}^{0}\rangle$
 - The CP eigenstates are:

$$|\mathbf{K}_{1}\rangle = \frac{1}{\sqrt{2}} \left(|\mathbf{K}^{0}\rangle - |\overline{\mathbf{K}}^{0}\rangle \right) \qquad CP = +1$$
$$|\mathbf{K}_{2}\rangle = \frac{1}{\sqrt{2}} \left(|\mathbf{K}^{0}\rangle + |\overline{\mathbf{K}}^{0}\rangle \right) \qquad CP = -1$$

Neutral Kaon Decay

- Decay eigenstates are (approximately) K_1 (*CP*=+1) and K_2 (*CP*=-1)
 - \bullet not the same as the flavour eigenstates K^0 and $\overline{K}{}^0$
- \bullet Two common decay modes of kaons 2π and 3π
 - $\pi^0\pi^0$ and $\pi^+\pi^-$ have CP = +1
 - $\pi^0\pi^0\pi^0$ and $\pi^+\pi^-\pi^0$ have CP = -1
- If *CP* is a good symmetry in kaon decay (which it nearly is) we expect:
 - $K_1 \rightarrow \pi^0 \pi^0$, $\pi^+ \pi^-$ *CP* = +1 conserved
 - $K_2 \rightarrow \pi^0 \pi^0 \pi^0$ and $\pi^+ \pi^- \pi^0$ CP = -1 conserved
- $K_1 \rightarrow \pi \pi$ has large phase space \Rightarrow quick decay, travels \sim cm before decay
 - named "K-short" or K_S with $\tau_S = 0.09$ ns
- Decay $K \rightarrow \pi \pi \pi$ has small phase space \Rightarrow slow decay, travels ~ 10 m before decay
 - "K-long" or K_L with $\tau_L = 51$ ns

Neutral Kaons continued

• Because the kaons can mix, a kaon state can be described as a superposition of K^0 and $\overline{K}{}^0$:

$$\psi(t) = \begin{pmatrix} a(t) | \mathbf{K}^0 \rangle \\ b(t) | \overline{\mathbf{K}}^0 \rangle \end{pmatrix}$$

• The hamiltonian will describe both the mixing the decay in terms of two hermitian matrices:

$$i\frac{\partial\psi(t)}{\partial t} = \hat{H}\psi(t) = (\hat{M} - \frac{i}{2}\hat{\Gamma})\psi(t)$$
$$\hat{M} - \frac{i}{2}\hat{\Gamma} = \begin{pmatrix} M_{\rm K} & \Delta m_{\rm K} \\ (\Delta m_{\rm K})^* & M_{\rm K} \end{pmatrix} - \frac{i}{2}\begin{pmatrix} \Gamma_{\rm K} & \Delta\Gamma_{\rm K} \\ (\Delta\Gamma_{\rm K})^* & \Gamma_{\rm K} \end{pmatrix}$$

• Mass difference $\Delta m_{\rm K} = m_{\rm S} - m_{\rm L} = 3.52(1) \text{ x}10^{-12} \text{ MeV} = 0.53 \text{ x} 10^{-10} \text{ s}^{-1}$ is a measure of the oscillation frequency

Neutral Kaon Properties

 $I(J^P) = \frac{1}{2}(0^-)$

Mean life $\tau = (0.8954 \pm 0.0004) \times 10^{-10}$ s (S = 1.1) Assuming *CPT* Mean life $\tau = (0.89564 \pm 0.00033) \times 10^{-10}$ s Not assuming *CPT* $c\tau = 2.6844$ cm Assuming *CPT*

```
I(J^P) = \frac{1}{2}(0^-)
```

$$\begin{split} m_{\mathcal{K}_L} &- m_{\mathcal{K}_S} \\ &= (0.5293 \pm 0.0009) \times 10^{10} \ \hbar \ \mathrm{s}^{-1} \quad (\mathrm{S} = 1.3) \quad \mathrm{Assuming} \ CPT \\ &= (3.484 \pm 0.006) \times 10^{-12} \ \mathrm{MeV} \quad \mathrm{Assuming} \ CPT \\ &= (0.5289 \pm 0.0010) \times 10^{10} \ \hbar \ \mathrm{s}^{-1} \quad \mathrm{Not} \ \mathrm{assuming} \ CPT \\ \mathrm{Mean} \ \mathrm{life} \ \tau = (5.116 \pm 0.021) \times 10^{-8} \ \mathrm{s} \quad (\mathrm{S} = 1.1) \\ &c\tau = 15.34 \ \mathrm{m} \end{split}$$

κ_S^0 DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	р (MeV/c)
0 0	Hadronic modes		
$\pi^{\circ}\pi^{\circ}$	(30.69 ± 0.05) %		209
$\pi^+\pi^-$	(69.20 ± 0.05) %		206
· ^		—	

κ ⁰ _L DECAY MODES	F	Fraction (Γ_i/Γ)	Scale factor/ Confidence level(I	<i>р</i> ИеV/с)						
Semileptonic modes										
$\pi^{\pm} e^{\mp} \nu_e$	[<i>n</i>]	(40.55 ± 0.11) %	S=1.7	229						
$\pi^{\pm}\mu^{\mp}\nu_{\mu}$ Called $K^{0}_{\mu3}$.	[<i>n</i>]	(27.04 ± 0.07)%	S=1.1	216						
$(\pi\mu \text{atom})\nu$		(1.05 ± 0.11) $ imes 1$	0 ⁻⁷	188						
$\pi^0 \pi^{\pm} e^{\mp} \nu$	[<i>n</i>]	(5.20 ± 0.11) $\times1$	0-5	207						
$\pi^{\pm} e^{\mp} \nu e^{+} e^{-}$	[<i>n</i>]	(1.26 ± 0.04) $ imes 1$	0-5	229						
Hadronic modes, including Charge conjugation×Parity Violating (CPV) modes										

-	-	-		,	
$3\pi^{0}$			(19.52 ± 0.12)%	S=1.6	139
$\pi^+\pi^-\pi^0$			(12.54 ± 0.05)%		133
$\pi^+\pi^-$	CPV	[p]	(1.967 \pm 0.010) $ imes$ 10 $^{-3}$	S=1.5	206
$\pi^{0}\pi^{0}$	CPV		(8.64 ± 0.06) $\times 10^{-4}$	S=1.8	209

http://pdg.lbl.gov/2012/tables/rpp2012-tab-mesons-strange.pdf

Neutral Kaons with CP Violation

• The CP eigenstates are K₁ and K₂

$$|\mathbf{K}_{1}\rangle = \frac{1}{\sqrt{2}} \left(|\mathbf{K}^{0}\rangle - |\overline{\mathbf{K}}^{0}\rangle \right) \qquad CP = +1$$
$$|\mathbf{K}_{2}\rangle = \frac{1}{\sqrt{2}} \left(|\mathbf{K}^{0}\rangle + |\overline{\mathbf{K}}^{0}\rangle \right) \qquad CP = -1$$

• The decay K_S and K_L are not quite identical to the *CP* eigenstates; in terms of a (small) parameter ε :

$$\begin{split} |\mathrm{K}_{\mathrm{S}}\rangle &= \frac{1}{N} \left((1+\epsilon) |\mathrm{K}^{0}\rangle - (1-\epsilon) |\overline{\mathrm{K}}^{0}\rangle \right) \\ |\mathrm{K}_{\mathrm{L}}\rangle &= \frac{1}{N} \left((1+\epsilon) |\mathrm{K}^{0}\rangle + (1-\epsilon) |\overline{\mathrm{K}}^{0}\rangle \right) \end{split}$$

• Both K_S and K_L contain slightly more K^0 (matter) than \overline{K}^0 (antimatter). The decay states contain both CP = +1 and CP = -1: CP is violated in weak force decay

$$|\mathbf{K}_{\mathrm{S}}\rangle = \frac{1}{N} \left(|\mathbf{K}_{1}\rangle - \epsilon |\mathbf{K}_{2}\rangle\right)$$
$$|\mathbf{K}_{\mathrm{L}}\rangle = \frac{1}{N} \left(|\mathbf{K}_{2}\rangle + \epsilon |\mathbf{K}_{1}\rangle\right)$$

• ε is measured to be $|\varepsilon| \sim 2 \times 10^{-3}$, the amount of indirect *CP* violation

CP and *T* Violation in $K_L \rightarrow \pi \ell v$

- CP violation is also observed in the semileptonic decay $K_L {\rightarrow} \pi \ \ell \ v$
 - \rightarrow *l* stands for *e* or μ
 - $ightarrow \mathbf{K}^{0}$ can only decay as $\mathbf{K}^{0} \rightarrow \pi^{-} \ell^{+} \nu$
 - $ightarrow \overline{\mathbf{K}}^{\mathbf{0}}$ can only decay as $\overline{\mathbf{K}}^{\mathbf{0}}
 ightarrow \pi^{+} \ell^{-} \overline{v}$
- $K_L = 1/N [(1+\epsilon) K^0 + (1-\epsilon) \overline{K}^0]$
- \bullet Measure asymmetry in \mathbf{K}_L decay rates:

$$\delta = \frac{\Gamma(K_L \to \pi^- \ell^+ \nu) - \Gamma(K_L \to \pi^+ \ell^- \bar{\nu})}{\Gamma(K_L \to \pi^- \ell^+ \nu) + \Gamma(K_L \to \pi^+ \ell^- \bar{\nu})}$$

$$\delta = \frac{(1+\epsilon)^2 - (1-\epsilon)^2}{(1+\epsilon)^2 + (1-\epsilon)^2} = 2 \operatorname{\mathcal{R}e}\left(\epsilon\right)$$

- Measured to be $\delta = 3.27(12) \times 10^{-3}$
- CP violation due to the mixing of the CP eigenstates

CP Violation in $K \rightarrow \pi\pi$

- $K_L \sim K_2 + \varepsilon K_1$ mainly CP = -1 plus a little CP = +1
 - K_L is observed decay into both $\pi\pi\pi$ (*CP* = -1) and $\pi\pi$ (*CP* = +1)
- Measured rate of $K_L \! \to \pi \pi$ is slightly larger than can be accommodated by ϵ
- A small amount (ϵ ') of the K_2 in K_L decays **directly** to $\pi\pi$.
 - Known as direct *CP* violation, measured to be $|\epsilon'/\epsilon| = 1.65(26) \times 10^{-3}$

A Measurement of the CP Violation Parameter $\mathcal{R}e(\epsilon'/\epsilon)$

Victoria Jane Martin

Department of Physics & Astronomy The University of Edinburgh

Thesis submitted for the degree of Doctor of Philosophy

August 3, 2000

- It took 40 year's of effort to measure these effects!
 - (including VJM's PhD thesis \rightarrow)
 - The observed amount of CP violation in these experiments is very small $\sim 10^{-3}$
 - CP is nearly a good symmetry in the weak interaction

Types of CP Violation

For reference, three types of *CP* violation are classified:

1. Direct CP violation in decay amplitudes

- Can occur in both charged and neutral particle decays
- e.g. ϵ ', the *CP*=-1 state decays directly to *CP*=+1 final state

2.CP violation in neutral meson mixing

• e.g. rate for $K^0{\to}\overline{K}{}^0$ not equal to rate for $\overline{K}{}^0{\to}K{}^0$, measured in semileptonic decay by δ

3.Indirect *CP* violation due to interference between mixing and decay

• e.g. ε measures decay mixing between *CP*=-1 and *CP*=+1 states

Summary

- The *CP* symmetry describes the difference between matter and anti-matter almost a good symmetry in the weak interactions.
- Small amounts of *CP* violation observed in K⁰ B⁰ D⁰ B_s⁰ through decays and mixing.
- Three types of *CP* violation:
 - 1. Direct *CP* violation in decay amplitudes
 - 2.CP violation in neutral meson mixing
 - 3.Indirect *CP* violation due to interference of mixing and decay.
- *CP* violation is accommodated in the Standard Model through a complex phase in the CKM matrix.
- The unitarity triangle of the CKM matrix is used to understand observation of the *CP* violation, and see if measurements are consistent.