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Particle Physics

Dr Victoria Martin, Spring Semester 2013
Lecture 15: Measuring CP Violation
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*Mixing and decays of kaons
*CKM Matrix revisited
*The unitarity triangle



Reminder: Guest Seminars

e From Edinburgh University researchers on their work.
e Monday (18th March) in tutorial:
e Guest seminar from Dr Greig Cowan on B-physics at LHCb

e Following Monday (25th March) in tutorial
e Guest seminar from Dr Wahid Bhimji on Higgs physics at ATLAS



Parity Violation in Pion Decays

e Consider charged pion decay at rest, 7= — u~ + v,
— <4 . ) _

e Charged pion has §=0 Vi > UL

= muon and neutrino produced with equal & Helicity: +1 (RH) Helicity: +1 (RH)
opposite spin

The muon and neutrino will have identical helicities chirality: RH chirality: LH

A o-p
| P
Experiments observe muon helicity is always right-

handed
Conclusion: Only right-handed anti-neutrinos exist!

e Similarly for #* — u* + v, anti-muon helicity is always left-handed
only left-handed neutrinos exist!
e This observation also explains why zn~ — u~ +v, is preferred over 7z~ — e~ + v,

Weak force decay produces particles with left handed chirality and antiparticles
with right handed chirality

The amount of LH chiral in a RH helicity state is related to p of the lepton. In
terms of lepton (£) mass: my

X
M + My




Neutrino States
ALLOWED

Parity( )
e ¢

VL . VR
Left- handed Right-handed

neutrino neutrino
Charge Charge
Conjugation (C Conjugation (C)

— am _

VL < vR
Left-handed pa”ty( ) Right-handed
antineutrino antineutrino

FORBIDDEN ALLOWED

Parity changes the direction of momentum, but not spin:
Left handed helicity — right handed helicity

Charge conjugation changes the sign of all charges:
particle — anti-particle

The existence of the vp and wr suggests that CPis a good symmetry in the weak interaction
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From Last Lecture: Summary

e Parity P and Charge Conjugation C are maximally violated in weak
interactions due to vector - axial vector structure of interaction
vertex.

e Conserved in strong and electromagnetic interactions.

e The combined symmetry CP describes the difference between matter
and anti-matter

e The existence of only LH neutrinos and RH anti-neutrinos suggest
CP is good symmetry in the weak force.

e CPT symmetry must be conserved... it’s one of the foundations of QM
and field theory!



Neutral Meson Mixing

e Second order weak interactions can mix long-lived neutral mesons with their
antiparticles:

K°(sd),D(cu),B’(bd),Bs(bs) K'°— K’ D"~ D’ B~ B’ By« B

e e.g. take the neutral kaons K? & K° as an example:

PIK)=-K PK)=-K) & /X
CPIK%) = -[K) CPIK’) = —[K") e i
e The CP eigenstates are: w+§ gw'
Ki) = - (K -IK)) cP=+ d e
1 - \/5 T o
1 —0
Ky) = —= (K +[K))  CP=-1



Neutral Kaon Decay

e Decay eigenstates are (approximately) K; (CP=+1) and Kz (CP=-1)
e not the same as the flavour eigenstates K° and K

e Two common decay modes of kaons 2z and 3=«
e 1'% and n*n~ have CP = +1
o t'a'n’ and ntxxw’ have CP =-1

e If CPis a good symmetry in kaon decay (which it nearly is) we expect:
o Ki —» n'ql , ntn~ CP = +1 conserved
e K2 — n'a'n’ and atan’ CP=-1 conserved

e Ki—nr has large phase space = quick decay, travels ~cm before decay
e named “K-short” or Ks with ts = 0.09 ns
e Decay K—nan has small phase space = slow decay, travels ~ 10 m before decay
e “K-long” or Kj, with T, =51 ns



Neutral Kaons continued

e Because the kaons can mix, a kaon state can be described as a
superposition of K?and K°:

- (80

e The hamiltonian will describe both the mixing the decay in terms of two
hermitian matrices:

R0
ot

= A1) = (VT — L T)u()

2" (AWLK)>l< Mg 2 (AFK)* 'k

e Mass difference Amx = ms— my=3.52(1) x10712 MeV =0.53x 107 1% s71 is a
measure of the oscillation frequency



Neutral Kaon Properties

1(JP) = 1(07)

Mean life 7 = (0.8954 + 0.0004) x 10710 s

ing CPT

Mean life 7 = (0.89564 + 0.00033) x 10710 s

CPT
cr = 2.6844 cm

Kg. DECAY MODES

Assuming CPT

Fraction (I';/T)

(S=11)

Scale factor/

Not assuming

Assum-

p

Confidence level (MeV/c)

Hadronic modes
(30.69+0.05) %

(69.2040.05) %

209
206

K} 1(JP) = L(07)

mKL - mKS
= (0.5293 4 0.0009) x 1019 A s~1 (S =1.3)
= (3.484 4 0.006) x 10712 MeV  Assuming CPT
= (0.5289 + 0.0010) x 101 s~ 1 Not assuming CPT
Mean life 7 = (5.116 £+ 0.021) x 1078 s (S = 1.1)
cr = 15.34 m

Scale factor/

K‘,’_ DECAY MODES Fraction (I';/T)

Assuming CPT

p
Confidence level (MeV/c)

Semileptonic modes

rteTu, [] (40.55 +£0.11 )% S=1.7
Called K(e)3.

mEuFu, ) [n] (27.04 +£0.07 )% S=1.1
Called Ku3'

(7 patom)v (1.05 +£0.11 ) x 10~/

Ortefuy [ (520 £0.11 ) x 1075

rteFfrete [n] (1.26 £0.04 ) x 10>

216

188
207
229

Hadronic modes, including Charge conjugationx Parity Violating (CPV) modes

370 (19.52 £0.12 ) % S=16
atr— 0 (12.54 +0.05 ) %

ata— CPV [p] ( 1.96740.010) x 10~3 S=1.5
7970 CPV ( 8.64 £0.06 ) x 104 S=1.8

http://pdg.lbl.gov/2012/tables/rppl012-tab-mesons-strange.pdf

139
133
206
209


http://pdg.lbl.gov/2012/tables/rpp2012-tab-mesons-strange.pdf
http://pdg.lbl.gov/2012/tables/rpp2012-tab-mesons-strange.pdf

Neutral Kaons with CP Violation

e The CP eigenstates are Ki an1d K>
—0
Ki) = —= (K - K))  CP=+1
\f
Ky) = (|KO + K >) CP = -1
e The decay Ks and K, are no u1te identical to the CP eigenstates;

in terms of a (small) parameter &: .
N is an overall

Ks) = % (14 )K" — (1~ K")) normatisation factor

Ki) = 1 (1K) + (1 - 9[K"))

e Both Ks and Ky, contain slightly more K° (matter) than K° (antimatter). The
decay states contain both CP=+1 and CP=-1: CP is violated in weak force
decay 1

Ks) = + (K1) —€[K2))

Ky ) = % (1K) + €l 1)

e ¢ is measured to be |g|~2 x 1073, the amount of indirect CP violation
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CP and T Violationin Ky, -z fv

e CP violation is also observed in the semileptonic decay
KiLr—ozm v B

¢ stands for e or u }f<vﬂ
K° can only decay as K'—z~ ¢ v KO s u
K° can only decay as K'—z* £~ v d d

o Ki=1/N[(1+g) K+ (1—-¢) K° |

-

e Measure asymmetry in Ky, decay rates: ’,W]I<7u
u
d

5 _ 'Ky -7 (Tv) —T'(Ky, —» 774 0) ]0
- DKy, — 7 4ty) + T(Ky, — 7t~ D)

| »

(1+€)?—(1—¢)?
1+ e+ (1—e)?
e Measured to be 6 =3.27(12) x 1073

e CP violation due to the mixing of the CP eigenstates

0 = = 2Re (€)
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CP Violation in K—nmr

e Ki.~K;+¢Ki mainly CP=-1 plus a little CP=+1
e Ky is observed decay into both man (CP=-1) and nix (CP=+1)

e Measured rate of KL — = is slightly larger than can be accommodated by ¢

e Asmall amount (g’) of the K in K1, decays directly to =nn.
e Known as direct CP violation, measured to be |g’/g|] =1.65(26) x 1073

A Measurement of the CP

Violation Parameter Re(e’/¢€)
¢ |t took 40 year’s of effort to measure these effects! Victoria Tane Martin
* (including VJM’s PhD thesis — )

e The observed amount of CP violation in these
experiments is very small ~1073

Department of Physics & Astronomy
The University of Edinburgh

e CP is nearly a good symmetry in the weak interaction

Thests submeied for the degree of Docfor of Phiesophy
Aungust 3, 2000
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Types of CP Violation

For reference, three types of CP violation are classified:

1.Direct CP violation in decay amplitudes
e Can occur in both charged and neutral particle decays
e €.g8. &', the CP=—1 state decays directly to CP=+1 final state

2.CP violation in neutral meson mixing

e e.g. rate for K’->K"° not equal to rate for K’—-K? , measured in
semileptonic decay by o

3.Indirect CP violation due to interference between mixing and decay
e €.g. £ measures decay mixing between CP=—1 and CP=+1 states
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Summary

e The CP symmetry describes the difference between matter and anti-matter
- almost a good symmetry in the weak interactions.

e Small amounts of CP violation observed in K° B? D? B,® through decays and
mixing.

e Three types of CP violation:
1.Direct CP violation in decay amplitudes
2.CP violation in neutral meson mixing
3.Indirect CP violation due to interference of mixing and decay.

e CP violation is accommodated in the Standard Model through a complex
phase in the CKM matrix.

e The unitarity triangle of the CKM matrix is used to understand observation
of the CP violation, and see if measurements are consistent.

14



