

Z

Particle Physics

Dr Victoria Martin, Spring Semester 2013 Lecture 16: More CP Violation and Introduction to Electroweak Theory

★Kaon mixing revisited

- **★**CKM matrix
- *****Weak Isospin and Weak Hypercharge

Z BOSON The Z BOSON is a very massive carrier particle for the weak force. Unlike its siblings the W-/W+ particles, the Z is neutrally charged. Living only 10-25 second, the Z quickly decays into other particles. Discovered in 1983, the Z has allowed physicists to further study electroweak theory. Wool felt with gravel fill for maximum mass. \$10.49 PLUS SHIPPING LIGHT HEAVY

EPARTICIEZOO

Kaon Mixing Revisited

• Indirect *CP* violation in mixing occurs because the rate between $\mathbf{K}^0 \to \overline{\mathbf{K}}^0$ transitions is smaller than the rate between $\overline{\mathbf{K}}^0 \to \mathbf{K}^0$ transition.

 $\Gamma(K^0 \to \overline{K}{}^0) \neq \Gamma(\overline{K}{}^0 \to K^0)$

- Slightly more matter (\mathbf{K}^0) is created than anti-matter ($\overline{\mathbf{K}}^0$)
- Therefore both decay eigenstates contain slightly more (
 more) matter than anti-matter:

$$|\mathbf{K}_{\mathrm{S}}\rangle = \frac{1}{N} \left((1+\epsilon) |\mathbf{K}^{0}\rangle - (1-\epsilon) |\overline{\mathbf{K}}^{0}\rangle \right)$$
$$|\mathbf{K}_{\mathrm{L}}\rangle = \frac{1}{N} \left((1+\epsilon) |\mathbf{K}^{0}\rangle + (1-\epsilon) |\overline{\mathbf{K}}^{0}\rangle \right)$$

CKM elements for kaon mixing

- \bullet Calculating $\mathcal M$ for this process, we have to consider all possible contributions due to different internal quarks.
- To work out which CKM matrix element, follow the quark line *backwards*: if $t \rightarrow s$: use V_{ts}
 - if $s \rightarrow t$: then we need V_{st} which doesn't exist, therefore use V^*_{ts}
- For this argument , just consider one contribution:

 $\mathcal{M} \propto V_{\rm cd} V_{\rm ts}^* V_{\rm td} V_{\rm cs}^* \qquad \qquad \mathcal{M}' \propto V_{\rm cs} V_{\rm td}^* V_{\rm ts} V_{\rm cd}^* \propto \mathcal{M}^*$

 $\Gamma(\mathbf{K}^{0} \to \overline{\mathbf{K}}^{0}) - \Gamma(\overline{\mathbf{K}}^{0} \to \mathbf{K}^{0}) = \mathcal{M} - \mathcal{M}^{*} = 2 Im(\mathcal{M})$

• The amount of *CP* violation is related to the imaginary parts of the CKM matrix elements

Cabibbo-Kobayashi-Maskawa Matrix

- The CKM matrix is the source of CP violation in the Standard Model
- Weak eigenstates are admixture of mass eigenstates, conventionally described using CKM matrix a mixture of the down-type quarks:

weak
eigenstates
$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$
 mass
eigenstates

• The CKM matrix is unitary, $V_{CKM}^{\dagger}V_{CKM} = 1$ implies nine "unitarity relations"

$$\begin{pmatrix} V_{\rm ud}^* & V_{\rm cd}^* & V_{\rm td}^* \\ V_{\rm us}^* & V_{\rm cs}^* & V_{\rm ts}^* \\ V_{\rm ub}^* & V_{\rm cb}^* & V_{\rm tb}^* \end{pmatrix} \begin{pmatrix} V_{\rm ud} & V_{\rm us} & V_{\rm ub} \\ V_{\rm cd} & V_{\rm cs} & V_{\rm cb} \\ V_{\rm td} & V_{\rm ts} & V_{\rm tb} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

• The most frequently discussed is (1st row × 3rd column):

$$V_{\rm ub}^* V_{\rm ud} + V_{\rm cb}^* V_{\rm cd} + V_{\rm tb}^* V_{\rm td} = 0$$

The Wolfenstein Parameterisation

• An expansion of the CKM matrix in powers of $\lambda = V_{us} = 0.22$

$$V_{\rm CKM} = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$$

- Parameterisation reflects almost diagonal nature of CKM matrix:
 - The diagonal elements V_{ud} , V_{cs} , V_{tb} are close to 1
 - \rightarrow Elements V_{us} , $V_{cd} \sim \lambda$ are equal
 - \rightarrow Elements V_{cb} , $V_{ts} \sim \lambda^2$ are equal
 - Elements $V_{\rm ub}$, $V_{\rm td} \sim \lambda^3$ are very small
- Diagonal structure means down quark mass eigenstate is almost equal to down quark weak eigenstate
 - similarly for strange and bottom mass eigenstates
- Note that the complex phase η only appears in the very small elements, and is thus hard to measure.

The Unitarity Triangle

- This **unitarity triangle** is often use to present measurements of *CP* violation in **B**-meson decay. • Lengths and angles of the triangle are: $\left| \frac{V_{ud}V_{ub}^*}{V_{v}V^*} \right| = \left| \frac{V_{td}V_{tb}^*}{V_{v}V^*} \right|$

$$\alpha \equiv \arg\left(-\frac{V_{\rm td}V_{\rm tb}^*}{V_{\rm ud}V_{\rm ub}^*}\right) \qquad \beta \equiv \arg\left(-\frac{V_{\rm cd}V_{\rm cb}^*}{V_{\rm td}V_{\rm tb}^*}\right) \qquad \gamma \equiv \arg\left(-\frac{V_{\rm ud}V_{\rm ub}^*}{V_{\rm cd}V_{\rm cb}^*}\right)$$

Triangle has a finite area only if relative complex phase between CKM elements

"CKM Fit"

- Experimental measurements used to determine lengths and sides of unitarity triangle.
- \bullet Determines best values for η and ρ parameters in Wolfenstein parameterisation.
- Current measurements indicate it is a closed triangle consistent with only small *CP* violation.

Electroweak Unification

- Electroweak Theory was proposed in 1967 by Glashow, Salam & Weinberg. Unifies the electromagnetic and weak forces (Noble prize 1979)
- In 1970 't Hooft and Veltman showed how to renormalise electroweak theory.

(Noble prize 1999)

- At high energies ($E \ge m_Z$) the electromagnetic force and the weak force are unified as a single **electroweak force**.
- At low energies ($E \leq m_Z$) the manifestations of the electroweak force are separate weak and electromagnetic forces.
- We will see today:
 - 1. The coupling constants for weak and electromagnetism are unified:

 $e = g_W \sin \theta_W$

• Where $\sin \theta_W$ is the weak mixing angle

2. Electroweak Unification predicts the existence of massive W^+ W^- and Z^0 bosons.

Relies on Higgs mechanism to "give mass" to the W and Z bosons.

Review from Lecture 7,8: Charged & Neutral Weak Current

- Neutral Current is the exchange of massive Z-bosons.
 - Couples to all quarks and all leptons (including neutrinos)
 - No allowed flavour changes!
 - Neutral weak current for fermion, f:

$$\frac{g_Z}{2}\bar{u}(f)\gamma^{\mu}(c_V^f - c_A^f\gamma^5)u(f)$$

 c_V^f and c_A^f are constants for fermion flavour, f.

Lepton	$c^{f}V$	c ^f A	Quark	$c^{f}V$	c^{f}_{A}
ν e, ν μ, ν τ	1/2	1/2	u, c, t	0.19	1/2
<i>e</i> , μ, τ	-0.03	-1/2	d, s, b	-0.34	-1/2

- Charged Current is the exchange of massive *W*-bosons.
 - Couples to all quarks and leptons and changes fermion flavour:
 - Allowed flavour changes are: $e \leftrightarrow v_e$, $\mu \leftrightarrow v_\mu$, $\tau \leftrightarrow v_\tau$, $\mathbf{d}' \leftrightarrow \mathbf{u}$, $\mathbf{s}' \leftrightarrow \mathbf{c}$, $\mathbf{b}' \leftrightarrow \mathbf{t}$
 - Acts only on the left-handed components of the fermions: *V*-*A* structure. $g_W \frac{1}{2\sqrt{2}} \bar{u}(\nu_e) \gamma^{\mu} (1 - \gamma^5) u(e^-)$

Weak Isospin and Hypercharge

- QED couples to electric charge; QCD couples to colour charge...
- Electroweak force couples to two "charges".
 - Weak Isospin: total and third component T, T₃. Depends on chirality
 - Weak Hypercharge, Y In terms of electric charge $Q: Y = 2(Q T_3)$
 - All right-handed fermions have T=0, $T_3=0$
 - All left-handed fermions have $T=\frac{1}{2}$, $T_3=\pm\frac{1}{2}$
 - All left-handed antifermions have $T=0, T_3=0$
 - All right-handed antifermions have $T = \frac{1}{2}$, $T_3(\overline{f}) = -T_3(f)$

Lepton	T	T 3	Y	Quark	T	T 3	Y
<i>Ve</i> L, <i>Vμ</i> L, <i>Vτ</i> L	1/2	$+\frac{1}{2}$	-1	u _L , c _L , t _L	1/2	+1/2	1/3
$e_{ m L}, \mu_{ m L}, au_{ m L}$	1/2	-1/2	-1	$\mathbf{d}_{\mathrm{L}}, \mathbf{s}_{\mathrm{L}}, \mathbf{b}_{\mathrm{L}}$	1/2	$-\frac{1}{2}$	1/3
VR	0	0	0	ur, cr, tr	0	0	4/3
$e_{\rm R}, \mu_{\rm R}, \tau_{\rm R}$	0	0	-2	dr, sr, br	0	0	-2/3