Particle Physics

Dr Victoria Martin, Spring Semester 2013 Lecture 17: Electroweak and Higgs

- *Weak Isospin and Weak Hypercharge
 *Weak Isospin and Weak Hypercharge currents
- $\star \gamma W^{\pm} Z^{0}$ bosons
- *Spontaneous Symmetry Breaking
- ★The Higgs mechanism and the Higgs boson

Weak Isospin and Hypercharge

- QED couples to electric charge; QCD couples to colour charge...
- Electroweak force couples to two "charges".
 - Weak Isospin: total and third component *T*, *T*₃. Depends on chirality
 - Weak Hypercharge, Y In terms of electric charge $Q: Y = 2(Q T_3)$
 - All right-handed fermions have T=0, $T_3=0$
 - All left-handed fermions have $T=\frac{1}{2}$, $T_3=\pm\frac{1}{2}$
 - All left-handed antifermions have T=0, $T_3=0$
 - All right-handed antifermions have $T = \frac{1}{2}$, $T_3(\overline{f}) = -T_3(f)$

Lepton	T	T 3	Y	Quark	T	T 3	Y
VeL, VµL, VτL	1/2	+1/2	-1	ul, cl, tl	1/2	$+\frac{1}{2}$	1/3
$e_{\mathrm{L}}, \mu_{\mathrm{L}}, \tau_{\mathrm{L}}$	1/2	-1/2	-1	d_L , s_L , b_L	1/2	$-\frac{1}{2}$	1/3
VR	0	0	0	u _R , c _R , t _R	0	0	4/3
$e_{\rm R}, \mu_{\rm R}, \tau_{\rm R}$	0	0	-2	d _R , s _R , b _R	0	0	-2/3

Weak Isospin Doublets

Lepton	T	T 3	Y	Quark	T	T 3	Y
VeL, VμL, VτL	1/2	+1/2	-1	u _L , c _L , t _L	1/2	+1/2	1/3
$e_{\mathrm{L}},\mu_{\mathrm{L}},\tau_{\mathrm{L}}$	1/2	- ¹ / ₂	-1	d _L , s _L , b _L	1/2	$-\frac{1}{2}$	1/3
VR	0	0	0	u _R , c _R , t _R	0	0	4/3
$e_{\rm R}, \mu_{\rm R}, \tau_{\rm R}$	0	0	-2	d _R , s _R , b _R	0	0	$-\frac{2}{3}$

• Neutrinos and left-handed charged leptons from a "weak isospin doublet":

$$\chi_{\rm L} = \begin{pmatrix} \nu_e \\ e^- \end{pmatrix}_{\rm L} \begin{pmatrix} \nu_\mu \\ \mu^- \end{pmatrix}_{\rm L} \begin{pmatrix} \nu_\tau \\ \tau^- \end{pmatrix}_{\rm L} T = 1/2; \quad T_3 = +1/2 \\ T_3 = -1/2$$

• Doublet consists of "charged current flavour change pair".

They have the same total weak isospin $T = \frac{1}{2}$.

They are differentiated by the third component $T_3 = \pm \frac{1}{2}$.

• Left-handed up-type quarks and left-handed down-type quarks also form isospin doublets

$$\begin{pmatrix} \mathbf{u} \\ \mathbf{d} \end{pmatrix}_{\mathbf{L}} \begin{pmatrix} \mathbf{c} \\ \mathbf{s} \end{pmatrix}_{\mathbf{L}} \begin{pmatrix} \mathbf{t} \\ \mathbf{b} \end{pmatrix}_{\mathbf{L}} \qquad T = 1/2; \quad T_3 = +1/2 \\ T_3 = -1/2 \end{cases}$$

Weak Isospin Currents

- Weak Isospin and Weak Hypercharge couple to a different set of bosons.
- Weak isospin doublets χ_L couple to a set of **three** *W*-bosons: *W*¹, *W*², *W*³, with SU(2) symmetry described by the 3 Pauli matrices:

$$\tau_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad \tau_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \quad \tau_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

• The *W*-bosons current is:

$$(j^{Wi})^{\mu} = [g_W T] \overline{\chi_L} \gamma^{\mu} \tau_i \chi_L$$

 $au_{1,2,3}$: Pauli Matrix χ_L : weak isospin doublet column vector spinors $\overline{\chi_L}$: weak isospin doublet row vectors spinors T: weak isospin charge of the doublet g_W : weak coupling constant

• e.g for the W^{I} boson and the electron doublet: $(j^{W1})^{\mu} = [g_{W}T] (\nu_{e} \ e^{-})_{L} \gamma^{\mu} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \nu_{e} \\ e^{-} \end{pmatrix}_{L}$

• Strength of the fermion interaction with *W*-bosons is: $g_W T$

Weak Hypercharge Current

- Particles with weak hypercharge couple to **one** *B*-boson: *B*⁰ with U(1) symmetry.
- Use electron as an example:

$$j^{Y}_{\mu} = \left(\frac{1}{2}g'_{W}Y_{e}\right)\overline{e}\gamma^{\mu}e = \frac{1}{2}g'_{W}\left(Y_{e\mathrm{L}}e\bar{e}_{\mathrm{L}}\gamma^{\mu}e_{\mathrm{L}} + Y_{e\mathrm{R}}e\bar{e}_{\mathrm{R}}\gamma^{\mu}e_{\mathrm{R}}\right)$$

 Y_e : weak hypercharge of electron Y_{eL} : weak hypercharge of left-handed electron Y_{eR} : weak hypercharge of right-handed electron e: Electron spinor e_L : Left-handed electron spinor (u) e_R : Right-handed electron spinor (u) e_L : Left-handed electron spinor (u) e_R : Right-handed electron spinor (u) e_R : Right-handed electron spinor (u) e_R : Right-handed electron spinor (u)

• Strength of the fermion interaction with bosons is: $g'_W Y/2$

Physical Bosons

- The physical W^+ , W^- , Z^0 , γ bosons are linear superpositions of the W^1 , W^2 , W^3 and B^0 bosons.
 - Use $\cos\theta_W$ and $\sin\theta_W$ to ensure the states are properly normalised

$$W^{+} = \frac{1}{\sqrt{2}} (W^{1} - iW^{2}) \qquad W^{-} = \frac{1}{\sqrt{2}} (W^{1} + iW^{2})$$
$$Z^{0} = W^{3} \cos \theta_{W} - B^{0} \sin \theta_{W} \qquad \gamma = W^{3} \sin \theta_{W} + B^{0} \cos \theta_{W}$$

• The coupling of the W^+ , W^- bosons are

$$\frac{1}{\sqrt{2}}(g_W T) = \frac{1}{2\sqrt{2}}g_W$$

• No $(1-\gamma^5)$ term: it integrated into the definition of the χ_L doublet.

The Photon

$$\gamma = W^3 \sin \theta_W + B^0 \cos \theta_W$$

• The electron current associated with the γ is:

$$(j^{W3})^{\mu} \sin \theta_{W} + (j^{Y})^{\mu} \cos \theta_{W}$$

$$= [g_{W}T \sin \theta_{W}] \overline{\chi_{L}}\gamma^{\mu} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \chi_{L} + [\frac{1}{2}g'_{W}Y_{e}\cos \theta_{W}] \overline{e}\gamma^{\mu}e_{L}$$

$$= -[\frac{1}{2}g_{W}\sin \theta_{W}] \overline{e_{L}}\gamma^{\mu}e_{L} + [\frac{1}{2}g'_{W}\cos \theta_{W}] (-\overline{e_{L}}\gamma^{\mu}e_{L} - 2\overline{e_{R}}\gamma^{\mu}e_{R})$$

$$= -[\frac{1}{2}g_{W}\sin \theta_{W} + \frac{1}{2}g'_{W}\cos \theta_{W}] \overline{e_{L}}\gamma^{\mu}e_{L} - [g'_{W}\cos \theta_{W}] \overline{e_{R}}\gamma^{\mu}e_{R}$$

$$= e$$

• Consistent with the photon coupling if $e = g'_W \cos \theta_W = g_W \sin \theta_W$

$\sin^2\theta_W$ and Z-boson couplings

• The mixing angle between g_W and g'_W is not a prediction of the model, it must be measured experimentally.

$$\sin^2 \theta_W = \frac{g_W^{+2}}{g_W^2 + g_W^{'2}} \approx 0.23$$

• The Z-boson the orthogonal mixture to the γ :

$$Z^0 = W^3 \cos \theta_W - B^0 \sin \theta_W$$

- predicts the couplings of the Z^0 boson in terms of T_3 and $Y = 2(Q T_3)$
- e.g. for electron:

$$(j^{Z})^{\mu} = \frac{g_{W}}{\cos \theta_{W}} \left[(T_{3} - Q \sin^{2} \theta_{W}) (\overline{e_{L}} \gamma^{\mu} e_{L}) - (Q \sin^{2} \theta_{W}) (\overline{e_{R}} \gamma^{\mu} e_{R}) \right]$$

= $\frac{g_{Z}}{2} \overline{e} \gamma^{\mu} (c_{V}^{e} - c_{A}^{e} \gamma^{5}) e$
• if:
$$q_{W}$$

$$g_Z = \frac{g_W}{\cos \theta_W} \qquad c_V = T_3 - 2Q\sin^2 \theta_W \qquad c_A = T_3$$

Summary of Electroweak Unification

- We have recovered the behaviour of the W^{\pm} , Z and γ
 - We introduced an SU(2) symmetry (3 bosons) coupling to weak isospin with a coupling constant g_W
 - We introduced a U(1) symmetry (1 boson) coupling to weak hypercharge with a coupling constant g'_W
 - Together predicts four bosons we identify with W^+ , W^- , Z and γ
 - \rightarrow Electroweak Theory is often called SU(2) \otimes U(1) model
- All of the properties of electroweak interactions described by:
 - the intrinsic charges of the fermions
 - the SU(2) \otimes U(1) symmetry
 - g_W and g'_W : free parameters that need to be measured
- Along with QCD, Electroweak Theory is the Standard Model.

The Higgs Mechanism: Introduction

- The Higgs Mechanism was proposed in 1964 separately by Higgs and Brout & Englert.
- It introduces an extra field, ϕ , which interacts with the electroweak currents. The potential of the field is:

$$V(\phi) = -\mu^2 \phi^{\dagger} \phi + \lambda (\phi^{\dagger} \phi)^2 \quad \text{with } \mu^2 > 0, \lambda > 0$$

- The Higgs mechanism allows the *W* and *Z* bosons to have a mass. (Otherwise forbidden by the external symmetries.)
- Provides an explanation for fermion masses (e, μ , τ , u, d, s, c, t, b).
- P.W. Higgs pointed out that a further consequence would be the existence of a spin-0 boson: the Higgs boson, *H*.

Spontaneous Symmetry Breaking

- Start with a system that has an intrinsic symmetry
 - Choosing a particular ground state configuration the symmetry is broken
 - If the choice is arbitrary, i.e. no external agent is responsible for the choice, then the symmetry is "spontaneously" broken
- Everyday example: A circle of people are sitting at a dining table with napkins between them. The first person who picks up a napkin, either with their left or right hand spontaneously breaks the L/R symmetry. All the others must do the same if everyone is to end up with a napkin.
- Physics example: In a domain inside a ferromagnet all the spins align in a particular direction. If the choice of direction is random, the underlying theory has a rotational symmetry which is spontaneously broken. The presence of an external magnetic explicitly breaks the symmetry and defines a preferred direction.

Higgs Potential

$$V(\phi) = -\mu^2 \phi^{\dagger} \phi + \lambda (\phi^{\dagger} \phi)^2$$

- ϕ is complex function.
- $V(\phi)$ is symmetric: the maximum symmetry occurs at $\phi=0$.
- A circle of values minimise the potential at $\phi = \phi_0 \equiv -v/\sqrt{2}$ with $|\phi_0| = \frac{\mu}{\sqrt{2\lambda}}$
 - Any coordinate around the circle minimise the potential: $\arg(\phi_0) = [0, 2\pi)$
- The choice of which complex value of ϕ_0 is chosen spontaneously breaks the symmetry.
- The value of v, related to the value of $|\phi|$ at the minimum of the potential known as the vacuum expectation value. Measured to be v = 246 GeV

Standard Model Higgs Field

• In the Standard Model, the Higgs field is a complex isospin doublet:

$$\phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} \phi_1 + i\phi_2 \\ \phi_3 + i\phi_4 \end{pmatrix} \qquad T = 1; \begin{array}{c} T_3 = +1 \\ T_3 = 0 \end{array}$$

• Higgs field has four degrees of freedom.

 ϕ^+ : +ve charged field ϕ^0 : neutral field ϕ_0 : minimum of field

- In the Higgs mechanism (when the symmetry is spontaneously broken) three of these degrees of freedom are used to give mass to W^+ , W^- , $Z^{0.}$
- This fixes three of the degrees of freedom: two charged and one neutral.
- The minimum of the potential ϕ_0 for ground state can then be written in terms of the remaining free parameter:

$$\phi_0 = \frac{1}{\sqrt{2}} \left(\begin{array}{c} 0 \\ v \end{array} \right)$$

• Where v is related to the value of ϕ which minimises V: $v = \frac{\mu}{\sqrt{2\lambda}}$

Introducing the Higgs Boson

• Consider a fluctuation of the Higgs field about its minimum:

$$\phi(x) = \phi_0 + h(x) = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v + h(x) \end{pmatrix}$$

• Substitute $\phi(x) = \frac{1}{\sqrt{2}}(v + h(x))$ into $V(\phi)$ and expand to second order in h(x):

$$V(\phi) = -\mu^2 \left(\frac{v + h(x)}{\sqrt{2}}\right)^2 + \lambda \left(\frac{v + h(x)}{\sqrt{2}}\right)^4 = \dots = V(\phi_0) + \lambda v^2 h^2 + \mathcal{O}(h(x)^3)$$

= $\frac{1}{2} m_H^2$

- In quantum field theory a term quadratic in the field describes a particle's mass.
- This fluctuation around the minimum of the potential describes a spin-0 particle with a mass $m = \sqrt{2\lambda}v$

• The Higgs boson!

Higgs Couplings

- The Higgs mechanism predicts that the Higgs boson interacts with the *W* and *Z* bosons and massive fermions, in proportion to their mass.
- The dotted line is the prediction.
- The points are the measured values from the CMS collaboration at the LHC.

