
Particle Physics
Dr Victoria Martin, Spring Semester 2013

Lecture 4: Dirac Spinors

★Schrödinger Equation
★Klein-Gordon Equation
★Dirac Equation
★Spinors
★Spin, helicity and chirality
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Schrödinger Equation

E =
p2

2m
+ V

•Classical energy-momentum relationship:

•Substitute QM operators:

Ê = i� ∂

∂t

i�∂ψ

∂t
=

�
−�2�2

2m
+ V

�
ψ = Ĥψ

Schrödinger equation!

p̂ = −i���

•1st order in ∂/∂t; 2nd order in ∂/∂x.  Space and time not 
treated equally.
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Klein-Gordon Equation
• Relativistic energy-momentum relationship is:

• Substitute the operators:  

• To give the Klein-Gordon equation:                                                                      

• The Klein-Gordon equation describes spin-0 bosons.  Solutions are plane 
waves (see lecture 3):

Ê = i� ∂

∂t

− 1
c2

∂2ψ

∂t2
+�2ψ =

�mc

�

�2
ψ

E2 = �p 2c2 + m2c4

ψ = e−ip·x p · x = pµxµ = �(�k · �x− ωt)

p̂ = −i���

• KG equation is 2nd order in ∂/∂t and ∂/∂x
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Negative Energy & the Dirac Equation

•The relativistic energy-momentum equation is quadratic, negative energy 
solutions are possible:

•Dirac searched for 1st order relationship between energy and momentum, 
using coefficients α1 α2 α3 and β

Ê ψ = (�α · �p + βm)ψ = i
∂ψ

∂t

•Need to find solutions for α and β 

E2 = �p 2 + m2 ⇒ E = ±
�

�p 2 + m2
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Dirac Equation

iγµ∂µψ = mψ

i

�
γ0 ∂ψ

∂t
+ �γ · ��

�
ψ = mψ

�
−iγ0 ∂

∂t
− i�γ · ��−m

� �
iγ0 ∂

∂t
+ i�γ · ��−m

�
= 0

• Solution is more elegant defining γ0 ≡ β, γ1 ≡ βα1, γ2 ≡ βα2, γ3 ≡ βα3

•The Dirac equation can be written (with c = ℏ = 1) as:

in covariant notation:

•Multiplying the Dirac equation by its complex conjugate must give KG: 

•This leads to a set of conditions on the four coefficients γµ:

γµ are unitary and anticommute

(γ0)2 = 1 (γ1)2 = −1 (γ2)2 = −1 (γ3)2 = −1
{γi, γj} = γiγj + γjγi = 0
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The Gamma Matrices - 1
•To satisfy unitarity and anti-commutation the γµ must be at least 4 × 4 

matrices.

•More than one representation.  The usual one is:

• γµ are not tensors or four vectors!  They do remain constant under Lorentz 
transformations    

γ0 =





1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1



 γ1 =





0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0





γ2 =





0 0 0 −i
0 0 i 0
0 i 0 0
−i 0 0 0



 γ3 =





0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0




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The Gamma Matrices - 2

•Gamma Matrices are also often written in a 2x2 form:

•where Ι and 0 are the 2 × 2 identity and null matrices:

•and the σi  are the 2 × 2 Pauli spin matrices:                                                                                                                 
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Dirac Equation and Solution
• In matrix notation:

• In co-variant notation:

•Solutions ψ to the Dirac Equation have a:

•phase term: e−ip·x

•Dirac spinor term, a function of the four-momentum: u(pµ)





i ∂
∂t −m 0 i ∂

∂z i ∂
∂x + ∂

∂y

0 i ∂
∂t −m i ∂

∂x −
∂
∂y −i ∂

∂z

−i ∂
∂z −i ∂

∂x −
∂
∂y −i ∂

∂t −m 0
−i ∂

∂x + ∂
∂y i ∂

∂z 0 −i ∂
∂t −m









ψ1

ψ2

ψ3

ψ4



 =





0
0
0
0





(iγµ∂µ −m)ψ = 0

ψ = u(pµ)e−ip·x (γµpµ −m)u = 0with u solution to
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Solutions to the Dirac Equation
• Dirac equation:

• Solve for a particle at rest, pµ = (m, 0), to illustrate main features of the solutions 

• Dirac equation becomes:

• Four energy eigenstates:

ψ = u(pµ)e−ip·x = u(pµ)e−imt

(iγ0 ∂

∂t
− iγ1 ∂

∂x
− iγ2 ∂

∂y
− iγ3 ∂

∂z
−m)ψ = 0

(iγµ∂µ −m) ψ = 0

(γ0E −m) u(pµ) = 0

•u1 and u2 with E = +m

•u3 and u4 with E = −m





E −m 0 0 0
0 E −m 0 0
0 0 −E −m 0
0 0 0 −E −m









u1(pµ)
u2(pµ)
u3(pµ)
u4(pµ)



 = 0
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Negative Energy Solutions
•We can’t escape negative energy solutions.  How should we interpret 

them?

•Modern Feynman-Stückelberg Interpretation:
A negative energy solution is a negative energy particle which propagates 
backwards in time or equivalently a positive energy anti-particle which 
propagates forwards in time.

•This is why in Feynman diagrams the backwards pointing lines represent 
anti-particles.

e−i(−E)(−t) → e−iEt

10



Discovery of Positron
Prof. M.A. Thomson Michaelmas 2011 65

Interpretation of –ve Energy Solutions
!The Dirac equation has negative energy solutions. Unlike the KG equation

these have positive probability densities. But how should –ve energy
solutions be interpreted?  Why don’t all +ve energy electrons fall into 
to the lower energy –ve energy states? 

Dirac Interpretation: the vacuum corresponds to all –ve energy states 
being full with the Pauli exclusion principle preventing electrons falling into
-ve energy states. Holes in the –ve energy states correspond to +ve energy
anti-particles with opposite charge. Provides a picture for pair-production
and annihilation.

....

....

mc2

-mc2

....

....

mc2

-mc2

!

....

....

mc2

-mc2

!

Discovery of the Positron

Prof. M.A. Thomson Michaelmas 2011 66

C.D.Anderson, Phys Rev 43 (1933) 491!Cosmic ray track in cloud chamber:

23 MeV

63 MeV

6 mm 
Lead
Plate

e"

e"

• e+ enters at bottom, slows down in the
lead plate – know direction

• Curvature in B-field shows that it is a 
positive particle

• Can’t be a proton as would have stopped in the lead

Provided Verification of Predictions of Dirac Equation

B

!Anti-particle solutions exist ! But the picture of the vacuum corresponding to 
the state where all –ve energy states are occupied is rather unsatisfactory, what
about bosons (no exclusion principle),….

• e+ enters at bottom, slows down in the lead plate – 
know direction
• Curvature in B-field shows that it is a positive particle
• Can’t be a proton as would have stopped in the lead

63 MeV

23 MeV
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Solutions 
• Making the equation first order in all derivatives introduces new degrees of 

freedom!

• The four solutions represent the four possible states of a fermion.

• The u are 1 x 4 matrices - spinors or Dirac spinors (not four-vectors)!

• Using the electron as an example:

• u1 represents an electron (E = m) with spin-up

• u2 represents an electron (E = m) with spin-down    

• u3 represents a positron (E = −m) with spin-down

• u4 represents a positron (E = −m) with spin-up 

ψ =





ψ1

ψ2

ψ3

ψ4



 =





u1(pµ)
u2(pµ)
u3(pµ)
u4(pµ)



 e−ip·x =





u1(pµ)
u2(pµ)

v2(−pµ)
v1(−pµ)



 e−ip·x

•  u3(p) and u4(p) are often written as v1(pµ)=u4(−pµ) and v2(pµ)=u3(−pµ)
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Spinors moving and at rest
•For a particle at rest spinors take the trivial form:

• For the moving particles (derivation see Griffiths Pp. 231-234):

Where we have changed notation for antiparticles from u3(p) →v2(-p) and u4(p) → v1(-p) 
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Helicity
• Spin is usually defined w.r.t the z-axis → not Lorentz invariant.

•Define helicity, ĥ, the component of the spin along direction of flight.

•For a S=½ fermion, the project of spin along any axis can only be ±½.

•For a S=½ fermion, eigenvalues of ĥ are ±1.

•We call h=+1, “right-handed”, h=−1 “left handed”.

•Massless fermions with (p=E) are purely left-handed (only u2)

•Massless antifermions are purely right-handed  (only v1)

•For massive particles helicity is still not Lorentz invariant: we can boost to 
frame such that particle direction of flight reverses

Pause for Breath…

Prof. M.A. Thomson Michaelmas 2011 77

•Have found solutions to the Dirac equation which are also eigenstates        but 
only for particles travelling along the z axis.

•Not a particularly useful basis 

•More generally, want to label our states in terms of “good quantum numbers”,
i.e. a set of  commuting observables.

(Appendix II)•Can’t use z component of spin:

•Introduce a new concept “HELICITY”

Helicity plays an important role in much that follows

Prof. M.A. Thomson Michaelmas 2011 78

Helicity
! The component of a particles spin along its direction of flight is a good quantum 

number:

! Define the component of a particles spin along its direction of flight as HELICITY:

•If we make a measurement of the component of spin of a spin-half particle
along any axis it can take two values       , consequently the eigenvalues
of the helicity operator for a spin-half particle are:

“right-handed” “left-handed”Often termed:

! NOTE: these are “RIGHT-HANDED” and LEFT-HANDED HELICITY eigenstates
! In handout 4 we will discuss RH and LH CHIRAL eigenstates. Only in the limit

are the HELICITY eigenstates the same as the CHIRAL eigenstates

ĥ =
�S · �p

|�S||�p|
=

2�S · �p

|�p|
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Chirality and Handedness
•Chirality is a Lorentz invariant quantify: identical to helicity for massless 

particles.

•S=½ fermions have two chiral states: left-handed and right-handed.

•Defined using chiral projection operators PL and PR:

•LH projection operator PL = (1 − γ5)/2  projects out left-handed chiral state

•RH projection operator PR = (1 + γ5)/2 projects out right-handed chiral state

where γ5 ≡ iγ0γ1γ2γ3  is 4×4 matrix:                                                    

                                     

γ5 =





0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0




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Chiral Projection Operators and γ5

        γ5 ≡ iγ0γ1γ2γ3                                                      

                                     

•  Properties: 
➡ Unitary (γ5)2 = 1
➡ Anti commutes with all other γ matrices: {γ5 , γi} = γ5γi + γiγ5 = 0 .

• Left and right handed component of a fermion state are ψL = PL ψ , ψR = PR ψ 

• PL + PR = 1 ⇒ ψ = PL ψ + PR ψ

• A state can always be written as the sum of LH and RH components

• PL2 = PL       PR2 = PR      PL PR  = 0    

• No overlap between the LH and RH components

γ5 =





0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0




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Summary and Reading List
• The Dirac Equation describes spin-½ particles.

• Solutions include four component spinors, u and v.  

•With γµ, µ=0,1,2,3 the 4 × 4 Gamma matrices

• The four solutions describe the different states of the electron e.g. left-handed 
electrons, right-handed electrons, right-handed positrons, left-handed positrons

•We use chiral projection operators to define left-handed and right-handed 
states

• Any particle can be written in terms of left handed and right handed 
components: ψ = (1 − γ5)ψ + (1 + γ5)ψ = ψL+ψR

• Next Lecture: The Electromagnetic Force.  Griffiths 7.5 & 7.6

(iγµ∂µ −m)ψ = 0

(γµpµ + m)v = 0(γµpµ −m)u = 0

ψ = u(p)e−ip·x ψ = v(p)e−ip·x
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