Particle Physics

Dr Victoria Martin, Spring Semester 2013
Lecture 4: Dirac Spinors
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* Spin, helicity and chirality




Schrodinger Equation

e Classical energy-momentum relationship:

p2

E = -V
2m
e Substitute QM operators:
p=—ihy B—inl
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Schrodinger equation!

e 1st order in ¢/0t; 2nd order in ¢/0x. Space and time not
treated equally.



Klein-Gordon Equation

e Relativistic energy-momentum relationship is:

E? = 5262 + m2c

e Substitute the operators:

p=—ihy E =ih—

¢ To give the Klein-Gordon equation:

g +vv= (%)

e The Klein-Gordon equation describes spin-0 bosons. Solutions are plane
waves (see lecture 3):

b=e T p.ox=phlr, =hk-T—wt)

e KG equation is 2nd order in ¢/0t and 0/0x



Negative Energy & the Dirac Equation

e The relativistic energy-momentum equation is quadratic, negative energy
solutions are possible:

E2:ﬁ2—|—m2 = E:::\/ﬁ2—|—m2

e Dirac searched for 1st order relationship between energy and momentum,
using coefficients a! a* @ and g
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e Need to find solutions for & and g



Dirac Equation

e Solution is more elegant defining ¥y = g, y! = Bdl, y* = pa?, y? = po’
e The Dirac equation can be written (with ¢ =h =1) as:

0 :
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in covariant notation: Y/ 0,1 = mu

e Multiplying the Dirac equation by its complex conjugate must give KG:
it i ) (0L i S —m) =

e This leads to a set of conditions on the four coefficients y#:
(W)=1 ()=-1 ()=-1 ()=-1
V=9 +977 =0

y* are unitary and anticommute



The Gamma Matrices - 1

e To satisfy unitarity and anti-commutation the »* must be at least 4 x 4
matrices.

e More than one representation. The usual one is:
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o o1 0o o [ o 0o 1 0

=10 0 -1 o0 T=1 0 =1 0 o0
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e ¥ are not tensors or four vectors! They do remain constant under Lorentz
transformations



The Gamma Matrices - 2

e Gamma Matrices are also often written in a 2x2 form:

0 I 0 2. 0 o
V= V= .
0 I —o* 0

0 1 0 —i 1 0
0'1= 0'2= 03=
1 0 i 0 0 -1



Dirac Equation and Solution

e I[N matrix notation:

@-%O—m L @-ﬁﬁ z‘a@iigﬁy \ (e /8\
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e In co-variant notation:
(21y"0,, — m)p =0

e Solutions y to the Dirac Equation have a:
e phase term: e %
e Dirac spinor term, a function of the four-momentum: u(p#)

= u(p')e """ with u solution to (7"'p, —m)u =0



Solutions to the Dirac Equation

e Dirac equation: (21y"0, —m)yY =0

00 10 5,0 30
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e Solve for a particle at rest, p# = (m, 0), to illustrate main features of the solutions
w _ u(p,u)e—'Lp.a: _ u(p,u,)e—zmt

e Dirac equation becomes: (VOE — m) u(p“’) =0

E—m 0 0 0 ut (pH)
0 E—m 0 0 u?(pH)
3 =0
0 0 —FE —m 0 u>(pH)
0 0 0 —FE —m u* (pH)

1 2 Wi —
e Four energy eigenstates: o u' and u® With £ =+m

o u3 and utwith E=—m



Negative Energy Solutions

e We can’t escape negative energy solutions. How should we interpret
them?

e Modern Feynman-Stiickelberg Interpretation:

A negative energy solution is a negative energy particle which propagates
backwards in time or equivalently a positive energy anti-particle which
propagates forwards in time.

p €~ (E<0) e" (E>0)
()] Y
5 e++ = + ¢ >'vvyvv = >\/V\A/
E>0 E<0 y
€ (E>0) e (E>0)

o—i(—E)(—t) _, —iBt

e This is why in Feynman diagrams the backwards pointing lines represent
anti-particles.
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Discovery of Positron

I
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e ¢t enters at bottom, slows down in the lead plate -
know direction

e Curvature in B-field shows that it is a positive particle
e Can’t be a proton as would have stopped in the lead
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Solutions

e Making the equation first order in all derivatives introduces new degrees of
freedom!

e The four solutions represent the four possible states of a fermion.
e The u are 1 x 4 matrices - spinors or Dirac spinors (not four-vectors)!

e Using the electron as an example:
e u! represents an electron (E = m) with spin-up

e u? represents an electron (E = m) with spin-down

e 13 represents a positron (E

—m

)
)

—m) with spin-down
)

e u? represents a positron (E with spin-up

e u’(p) and u'(p) are often written as v!(p*)=u*(—p*) and v*(p*)=u’(—p*)

TN AR )\
w _ ¢2 _ u2 (p,u) e—ip-a: _ u2 (p,u) e—ip-a:
P u’(pH) v*(—p")
\ vt )\ ) vt (—p")
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Spinors moving and at rest

e For a particle at rest spinors take the trivial form:

(1) (0 [0) [0
L | o , |1 0 0
0 1

0 0
\ 0 \ 0 ) \ 0 ) \ 1)

e For the moving particles (derivation see Griffiths Pp. 231-234):

Fermions:
() [ 0
’U.l pnd 0 u2 - .
p:/(E + m) (pz — ipy)/(E + m)
\ (0 +1ip,)/(E+m) ) \  —p:/(E+m) )
Antifermions:
[ p/(EB+m) ) ([ (b —ip,)/(E+m) )
2 _ | (e tipy)/(E+m) o —p:/(E +m)
1 0

\ 0 ) \ 1 /

Where we have changed notation for antiparticles from u’(p) —v?(-p) and u*(p) — v!(-p)



Helicity

e 5pin is usually defined w.r.t the z-axis = not Lorentz invariant.
e Define helicity, &, the component of the spin along direction of flight.

—

S-p 257
Slipl 1P

e For a §=% fermion, the project of spin along any axis can only be +%.

h =

e For a S=% fermion, eigenvalues of / are 1.
e We call h=+1, “right-handed”, h=—1 “left handed”.

% )
h=+1 = —1

“right-handed” “left-handed”

e Massless fermions with (p=FE) are purely left-handed (only «?)
e Massless antifermions are purely right-handed (only v/)

e For massive particles helicity is still not Lorentz invariant: we can boost to
frame such that particle direction of flight reverses
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Chirality and Handedness

e Chirality is a Lorentz invariant quantify: identical to helicity for massless
particles.

e =% fermions have two chiral states: left-handed and right-handed.

e Defined using chiral projection operators P; and Prk:
e LH projection operator P. = (I — y°)/2 projects out left-handed chiral state
e RH projection operator Pr = (I + y°)/2 projects out right-handed chiral state

where y5 = iy%ly2y3 is 4x4 matrix:  ~°

O =) O O
—— O O O

o O O =
O O = O
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Chiral Projection Operators and >
)

Y5 = iyOyly2y3 (

Ut
O =) O O
_— O O O
O O = O

N—

o O O =

e Properties:
= Unitary (y°)*=1
= Anti commutes with all other y matrices: {y>,y} =v>y'+vyy°=0 .

¢ | eft and right handed component of a fermion state are wir =Pry, wgr = Pry

o PL+Pr=1=yw=PLy+ Pry
e Astate can always be written as the sum of LH and RH components

o P/’=pP; Pr?=Pr PLPr =0
e No overlap between the LH and RH components
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Summary and Reading List

e The Dirac Equation describes spin-%2 particles.

(t1y"0,, —m)p =0

e Solutions include four component spinors, u and v.

(Yp, —m)u=0 (y"p, +m)v =0

v =u(p)e”P* ¢ =uv(p)e "
o With v, u=0,1,2,3 the 4 x 4 Gamma matrices

e The four solutions describe the different states of the electron e.gq. left-handed
electrons, right-handed electrons, right-handed positrons, left-handed positrons

e We use chiral projection operators to define left-handed and right-handed
states

e Any particle can be written in terms of left handed and right handed
components: y = (I — )y + (I + )y = yrLtyr

e Next Lecture: The Electromagnetic Force. Griffiths 7.5 & 7.6
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