Particle Physics

Dr Victoria Martin, Spring Semester 2013 Lecture 1: The Mysteries of Particle Physics, or "Why should I take this course?"

Contents:

- Review of the Standard Model
 - ➡ What we know
 - ➡ What we don't know
- Highlights from 2012 particle physics
 - What we know now that we didn't know this time last year

Course Organisation

Teaching weeks: 14 January - 15 February; 25 February - 5 April

ILW: 18 - 22 February (no lectures)

Particle Physics course:

- 18 Lectures: Tuesday, Friday 12:10-13:00 (JCMB 5215)
 - No PP lectures: 10 Feb, 6 April
 - Two themes: Particles & interactions of the Standard Model, Current topics in particle physics
- Tutorials: Monday 3-5 in 5326
- I'll try to recommend reading for the course from *Introduction to Elementary Particle Physics* by David Griffiths. (7 copies in Darwin Library)
- Printed notes and problem sheets handed out periodically and available on the web.
- Lecture slides (and eventually solution sheets) will only be available on the web.

Me

- Dr Victoria Martin, JCMB 5419
- I work on the ATLAS experiment at the Large Hadron Collider at CERN.
- I currently lead the University of Edinburgh ATLAS team of ~20 PhD students, postdoctoral researchers and academics

- I also have an interest in future colliders e.g. a high energy *e*+*e*-collider
- Personal interest: looking for the decay of the Higgs boson into quarks, e.g. $H \rightarrow b\overline{b}$

References & Websites

• Course website: http://www2.ph.ed.ac.uk/~vjm/Lectures/SH_IM_Particle_Physics_2013.html

Introductory textbooks

- D.Griffiths Introduction to Elementary Particles (Wiley 2008)
- C. Tully *Elementary Particle Physics in a Nutshell* (Princeton 2011)
- B.R.Martin & G.Shaw Particle Physics (Wiley 1997)
- D.H.Perkins Introduction to High Energy Physics (CUP 2000)

More advanced textbooks

- F.Halzen & A.D.Martin Quarks & Leptons (Wiley 1984)
- A.Seiden Particle Physics: A Comprehensive Introduction (Addison-Wesley 2005)
- I.J.R.Aitchison & A.J.G.Hey Gauge Theories in Particle Physics (Hilger 1989)

Useful websites

- CERN/LHC <u>http://public.web.cern.ch/public</u>
- Particle Data Group (PDG) <u>http://pdg.lbl.gov</u>

Particles & Interactions of the Standard Model

- 1. Introduction: The Mysteries of the Standard Model
- 2. Forces, feynman diagrams, scattering.
- 3. Dirac equation & spinors.
- 4. Electromagnetic interactions: Quantum Electrodynamics (QED).
- 5. Weak Interactions, Weak decays & Neutrino scattering.
- 6. Deep inelastic scattering, the parton model & parton density functions.
- 7. Strong interactions: Quantum Chromodynamics (QCD) and Gluons.
- 8. Quark model of hadrons. Isospin and Strangeness. Heavy quarks.

Current Topics in Particle Physics

Content to be finalised, but probably including...

- 10. Hadron production at Colliders, Fragmentation and jets.
- 11. Weak decays of hadrons. CKM matrix.
- 12. Symmetries. Parity. Charge conjugation. Time reversal. CP and CPT.
- 13. Mixing and CP violation in *K* and *B* meson decays.
- 14. Neutrino oscillations. MNS matrix. Neutrino masses.
- 15. Electroweak Theory. W and Z boson masses.
- 16. Spontaneous symmetry breaking and the Higgs boson.
- 17. Beyond the Standard Model. Supersymmetry. Grand unification.
- 18. Recent physics results at the LHC.

Standard Model Matter Particles

- Matter particles are observed to be $s=\frac{1}{2}$ fermions.
- Two distinct types: quarks and leptons.
- Grouped into three, successively heavier, generations.
- Four key quantum numbers: charge (Q), isospin (I_Z) , baryon number (B), lepton number (L)

Mysteries of the Fermion Masses

• Masses are well measured (apart from the very low mass v_i) but the hierarchy not understood:

- Logarithmic scale covers 15 orders of magnitude!
- Charged leptons ($\ell_i = e, \mu, \tau$), up-type quarks ($\mathbf{u}_i = \mathbf{u}, \mathbf{c}, \mathbf{t}$) and down-type quarks ($\mathbf{d}_i = \mathbf{d}, \mathbf{s}, \mathbf{b}$) quarks have similar masses but the patterns are not identical
- Absolute scale of neutrino (v_i) masses is unknown apart from upper bound on $m(v_e) < 2eV$
- Only two independent v_i mass differences are known:

 $\Delta m_{12}^2 = (7.5 \pm 0.2) \times 10^{-5} \text{ eV}^2, \Delta m_{23}^2 = (2.32^{+0.12} - 0.08) \times 10^{-3} \text{ eV}^2$

Standard Model Forces

- Four interactions observed in nature: electromagnetic, strong, weak and gravity.
- The Standard Model describes interactions due to electromagnetic, strong, weak.
- Interactions between the fermions are transmitted by "force carrying" gauge bosons with *S*=1.
- Each force couples to a property of the fermions.
- The structure of the interactions of each force are described mathematically by a symmetry group (more on this later)

Interaction	Coupling	Couples	Gauge	Charge	Mass
	$\operatorname{Strength}$	То	Bosons	e	${ m GeV}/c^2$
Strong	$\alpha_s \approx 1$	colour-charge	Gluons (g)	0	0
Electromagnetic	$\alpha = 1/137$	electric charge	Photon (γ)	0	0
Weak	$G_F = 1 \times 10^{-5}$	weak hyercharge	$\begin{cases} W^{\pm} \\ Z^0 \end{cases}$	${\pm 1 \atop 0}$	80.385 ± 0.015 91.1876 ± 0.0021
Gravity	0.53×10^{-38}	\max	Graviton	0	0

Interactions of the Leptons

Electromagnetic

- Leptons interact due to all the electromagnetic and weak forces.
 - All charged leptons ($\ell_i = e, \mu, \tau$) have the same couplings (lepton universality)
 - Only *W*-boson interactions can cause the leptons to change flavour (from charged to neutral)

Interactions of the Quarks

- All flavours have the same strong force coupling
- Only *W*-boson interactions can cause the quarks to change flavour (from up-type to down-type).

Mysteries of the Fermions

- Are the fermions really point-like objects ($r_e < 10^{-20}$ m)?
- Why are there exactly twelve (or 24) elementary fermions?
- Why are there three "generations" with different "flavours"?
- Why do quarks have strong interactions with three "colour charges"?
- Why do weak interactions change quark flavour, but not lepton flavour?
- Why do neutrinos have flavour oscillations?
- Why more matter than anti-matter (baryon asymmetry)?

Mysteries of the Bosons

- Electromagnetic and weak interactions are unified at the Electroweak scale (246 GeV)
 - Is there a "grand unified" scale where the strong interaction is also included?
- What is the mechanism that breaks electroweak symmetry, and how does it explain the large masses of the *W* and *Z* bosons?
- Are there extra Higgs bosons?
- What are the couplings of Higgs boson(s)?
- How do we include gravity?

125 GeV

H⁰

Higgs

Bosons (Forces)

Quark Mixing

- Quark flavours are observed to change in *W*-boson interactions
- Described in the Standard Model with the Cabibbo-Kobayashi-Maskawa quark mixing matrix

$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

$ V_{ud} $	$ V_{us} $	$ V_{ub} $		0.97428 ± 0.00015	0.2253 ± 0.0007	$0.00347^{+0.00016}_{-0.00012}$	
$ V_{cd} $	$ V_{cs} $	$ V_{cb} $	=	0.2252 ± 0.0007	$0.97345^{+0.00015}_{-0.00016}$	$0.0410^{+0.0011}_{-0.0007}$	Ū
$ V_{td} $	$ V_{ts} $	$ V_{tb} $		$0.00862^{+0.00026}_{-0.00020}$	$0.0403^{+0.0011}_{-0.0007}$	$0.999152^{+0.000030}_{-0.000045}$	

 The parameters of this matrix are experimentally measured, but why this structure!?

> reference: Wikipedia <u>http://</u> <u>en.wikipedia.org/wiki/Cabibbo-</u> <u>Kobayashi-Maskawa_matrix</u>

Neutrino Mixing

- Neutrinos are also observed to change flavour e.g. muon neutrinos produced in the atmosphere from cosmic rays $v_{\mu} \rightarrow v_{\tau}$
- Implies neutrinos have mass. The mass eignenstates of the neutrinos are a mixture of v_e , v_μ and v_τ . Two possible solutions for current

- Mixing fractions are experimentally measured. Why this pattern!?
- Neutrinos masses don't really fit into the Standard Model, they imply other particles/interactions we haven't observed yet.

reference: Wikipedia http://en.wikipedia.org/wiki/ Pontecorvo-Maki-Nakagawa-Sakata_matrix

The Dark Side

- Only 4.6% of the current universe is normal matter (baryons + electrons = atoms)
- To account for rotation curves of galaxies, gravitational lensing and large scale structure need:

23.3% "Dark Matter"

Must be weakly interactive massive particles (not yet discovered) candidates are provided by a "supersymmetric" extension to the Standard Model

 To account for acceleration of expansion of the universe need:

72.1% "Dark Energy"

May be described by a cosmological constant Λ

Could particle physics describe either dark matter or dark energy?

Beyond the Standard Model

Many models proposed to explain some mysteries in the Standard Model, e.g.

*** Supersymmetry (SUSY):** every SM particle has a supersymmetry partner:

- \Rightarrow S=0 squarks and sleptons
- \implies S=¹/₂ neutralinos, charginos, higgsinos
- automatically introduces extra Higgs bosons

We are searching for these new particles directly at the LHC. Neutralinos may be candidates for dark matter.

★ Grand unified theories merge strong & electroweak interaction at 10¹¹ to 10¹⁶ GeV
 ➡ Proton decay? Lifetime >10²⁹ to 10³³ years (depending on model)
 Search for evidence of proton decay

★ Additional Heavy neutrino(s) at GUT scale can explain neutrino oscillations and light neutrino masses.

★ Extra dimension where only gravity interacts

Mini black holes, new resonances Searches at the LHC.

Particle Physics in 2012

The two big results of the year were:

 \star Discovery of a new boson, very probably the Higgs boson!

 \star A first measurement of $B_{\rm S} \rightarrow \mu^+ \mu^-$

 \star A measurement of neutrino mixing angle sin θ_{13}

Observation of $B_S \rightarrow \mu^+ \mu^-$

• By LHCb experiment at CERN

asured Branching Ratio is $(B_S \rightarrow \mu^+ \mu^-) = (3.2 \pm^{1.5} 1.2) \times 10^{-9}$

- Compatible with the prediction of the Standard Model
- Better measurements could limit the contributions from non-Standard Model processes

reference: http://arxiv.org/abs/1211.2674

$$BR(B_s \to \mu^+ \mu^-) \propto |C_s - C'_s|^2 \left(1 - \frac{4m_{\mu}^2}{m^2}\right) + \left(C_P - C'_P\right) + \frac{2m_{\mu}}{m} \left(C_{10} - C'_{10}\right) \Big|^2$$

Electron Neutrino Disappearance

3σ

 1σ

0.15

10

- Day Bay experiment in South China
- Sensitive to electron anti-neutrinos (\overline{v}_e) from six nuclear reactors (**D**, **L**) detected by six detectors (**AD**).
- Look at difference between detection rates between near (EH1, EH2) and far (EH3) detectors.

$P_{\text{survival}} \approx 1 - \sin^2 2\theta_{13} \sin^2(1.267\Delta m_{31}^2 L/E)$

- $\Delta m_{31}^2 = 2.23 \pm {}^{0.12}_{0.08} {}^{1.15}_{meV^2} \text{ measured from the atmospheric reactions} * {}^{70}_{23} {}^{0.12}_{meV^2} {}^{1.15}_{meV^2} {}^{0.08}_{meV^2} {}$
- *E* is the energy of $\mathbf{z}^{\frac{3}{2}} \mathbf{w}_{e}^{5}$ in MeV
- *L* is the distance of between detectors in metres. 0.95
- Measurement is $\sin^2 \theta_{13} = 0.0089 \pm 0.001$ ^{Eff}

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 Weighted Baseline [km] reference: <u>http://arxiv.org/abs/1210.6327</u>

Discovery of the Higgs Boson

- ATLAS and CMS experiments at CERN
- "Bumps" observed in invariant mass at $m \approx 125$ GeV in:
- Consistent with $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ \rightarrow 4\ell$ production
- \bullet Statistical significance of the excess is now 7 σ from ATLAS alone!

≥50

vents/10

m_{yy} [GeV]

ATLAS Preliminary

Background Z+jets, tt

Background ZZ^(*)

Data

http://atlas.ch

> 012-05-18 0:28:11 CEST

December 2012

- Fabiola Gianotti is named Time magzine Person of the Year 2012, runner up
- Higgs boson is particle of year 2012.
- Professor Higgs awarded Membership of the Order of the Companions of Honour by Queen Elizabeth II
- Alan Walker is awarded an MBE for services to science engagement and science education in Scotland.

http://www.ph.ed.ac.uk/news/new-years-honours-2013-08-01-13

Prof Higgs visits ATLAS

Summary & Reading List

- Summary: the Standard Model is our current model for particle physics. But it doesn't explain all observations.
- Experiments are underway to try to make precise measurements and search for new phenomena.
- Key point from today: learn/review the Standard Model particles and forces.

Highly suggested reading:

- Today's lecture: Griffiths 1.1 -1.5
- Friday's Lecture: Griffiths chapter 2

