SH/IM Particle Physics - Problem Sheet 1

Discussion Questions

For discussion with your classmates.

- D1 At a collider, such as the LHC, how can you measure a cross section? For example the cross section for Higgs bosons decaying into photons $\sigma(pp \to H \to \gamma\gamma)$.
- D2 How do you measure a branching ratio of a decay? For example how would you measure the branching ratio of the Z^0 boson into electrons: $Z^0 \rightarrow e^+e^-$?

Standard Problems

- S1 Draw the lowest order Feynman diagrams, and describe qualitatively how the angular distributions of the following high energy scattering processes differ from each other:
 - (a) Bhabha scattering $e^+e^- \rightarrow e^+e^-$
 - (b) Muon pair production $e^+e^- \rightarrow \mu^+\mu^-$
 - (c) Moeller scattering $e^-e^- \rightarrow e^-e^-$
 - (d) Electron-muon scattering $e^-\mu^- \rightarrow e^-\mu^-$
- S2 The Mandelstam variables s, t, u in the scattering process $1+2 \rightarrow 3+4$ are defined in terms of the momentum 4-vectors (p^{μ}) as:

$$\begin{array}{rcl} s & = & (p_3^\mu + p_4^\mu)^2 \\ t & = & (p_1^\mu - p_3^\mu)^2 \\ u & = & (p_1^\mu - p_4^\mu)^2 \end{array}$$

- (a) Show that $s + t + u = m_1^2 + m_2^2 + m_3^2 + m_4^2$.
- (b) Show that \sqrt{s} is the total energy of the collision in the centre of mass frame.
- S3 (a) Draw the Feynman Diagram for elastic scattering of two spinless particles by a photon.
 - (b) Show that the Matrix element \mathcal{M} for this process can be written as:

$$\mathcal{M} = \frac{\alpha}{q^2} \left(p_1 + p_3 \right) \left(p_2 + p_4 \right) \delta^4 \left(p_1 + p_2 - p_3 - p_4 \right)$$

Where p_1, p_2 are the initial four-momenta and p_3, p_4 are the final momenta of the particles.

The cross section for a 2 particle \rightarrow 2 particle scattering process is:

$$\sigma = \frac{S}{64\pi^2 s} \frac{|\vec{p}_f^*|}{|\vec{p}_i^*|} \int |\mathcal{M}|^2 d\Omega$$

Where \vec{p}_{f}^{*} is the momentum of the final state particles and \vec{p}_{i}^{*} is the momentum of the initial particles, both in the centre of momentum frame.

- (c) What is the differential cross section $d\sigma/d\Omega$ for the process above?
- S4 In a 2-body decay, $1 \rightarrow 2+3$ the decay rate is:

$$\Gamma = \frac{S|\vec{p}^*|}{8\pi\hbar m_1^2 c} |\mathcal{M}|^2$$

where $|\vec{p}^*|$ is the three-momentum of the final state particles in the centre of momentum frame.

Show that:

$$|\vec{p}^{*}| = \frac{c}{2m_1}\sqrt{m_1^4 + m_2^4 + m_3^4 - 2m_1^2m_2^2 - 2m_1^2m_3^2 - 2m_2^2m_3^2}$$

S5 The π^+ meson decays almost entirely via the two body decay process $\pi^+ \to \mu^+ \nu_\mu$ with an matrix element given by

$$|\mathcal{M}|^2 = G_F^2 f_\pi^2 m_\mu^2 (m_\pi^2 - m_\mu^2)$$

where $G_F = 1.166 \times 10^{-5} \text{ GeV}^{-2}$ is the Fermi constant, and f_{π} is related to the size of the pion wavefunction (the pion being a composite object).

- (a) Obtain a formula for the $\pi^+ \to \mu^+ \nu_\mu$ decay rate, using the equations in question S4.
- (b) Assuming $f_{\pi} \sim m_{\pi}$, calculate the pion lifetime in natural units and in seconds, and compare to the measured value. Note that $m_{\pi} = 139.6 \text{ MeV}, m_{\mu} = 105.7 \text{ MeV}, \tau_{\pi} = 2.6 \times 10^{-8} \text{ s.}$
- (c) By replacing m_{μ} by m_e , show that the rate of $\pi^+ \to e^+ \nu_e$ is 1.28×10^{-4} times smaller than the corresponding decay rate to muons. Show also that, on the basis of phase space alone (i.e. neglecting the factor $|\mathcal{M}|^2$), the decay rate to electrons would be expected to be greater than the rate to muons.