SH/IM Particle Physics - Problem Sheet 1

Discussion Questions

For discussion with your classmates.
D1 At a collider, such as the LHC, how can you measure a cross section? For example the cross section for Higgs bosons decaying into photons $\sigma(p p \rightarrow H \rightarrow \gamma \gamma)$.

D2 How do you measure a branching ratio of a decay? For example how would you measure the branching ratio of the Z^{0} boson into electrons: $Z^{0} \rightarrow e^{+} e^{-}$?

Standard Problems

S1 Draw the lowest order Feynman diagrams, and describe qualitatively how the angular distributions of the following high energy scattering processes differ from each other:
(a) Bhabha scattering $e^{+} e^{-} \rightarrow e^{+} e^{-}$
(b) Muon pair production $e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}$
(c) Moeller scattering $e^{-} e^{-} \rightarrow e^{-} e^{-}$
(d) Electron-muon scattering $e^{-} \mu^{-} \rightarrow e^{-} \mu^{-}$

S2 The Mandelstam variables s, t, u in the scattering process $1+2 \rightarrow 3+4$ are defined in terms of the momentum 4 -vectors (p^{μ}) as:

$$
\begin{aligned}
s & =\left(p_{3}^{\mu}+p_{4}^{\mu}\right)^{2} \\
t & =\left(p_{1}^{\mu}-p_{3}^{\mu}\right)^{2} \\
u & =\left(p_{1}^{\mu}-p_{4}^{\mu}\right)^{2}
\end{aligned}
$$

(a) Show that $s+t+u=m_{1}^{2}+m_{2}^{2}+m_{3}^{2}+m_{4}^{2}$.
(b) Show that \sqrt{s} is the total energy of the collision in the centre of mass frame.

S3 (a) Draw the Feynman Diagram for elastic scattering of two spinless particles by a photon.
(b) Show that the Matrix element \mathcal{M} for this process can be written as:

$$
\mathcal{M}=\frac{\alpha}{q^{2}}\left(p_{1}+p_{3}\right)\left(p_{2}+p_{4}\right) \delta^{4}\left(p_{1}+p_{2}-p_{3}-p_{4}\right)
$$

Where p_{1}, p_{2} are the initial four-momenta and p_{3}, p_{4} are the final momenta of the particles.
The cross section for a 2 particle $\rightarrow 2$ particle scattering process is:

$$
\sigma=\frac{S}{64 \pi^{2} s} \frac{\left|\vec{p}_{f}^{*}\right|}{\left|\vec{p}_{i}^{*}\right|} \int|\mathcal{M}|^{2} d \Omega
$$

Where \vec{p}_{f}^{*} is the momentum of the final state particles and \vec{p}_{i}^{*} is the momentum of the initial particles, both in the centre of momentum frame.
(c) What is the differential cross section $d \sigma / d \Omega$ for the process above?

S4 In a 2-body decay, $1 \rightarrow 2+3$ the decay rate is:

$$
\Gamma=\frac{S\left|\vec{p}^{*}\right|}{8 \pi \hbar m_{1}^{2} c}|\mathcal{M}|^{2}
$$

where $\left|\vec{p}^{*}\right|$ is the three-momentum of the final state particles in the centre of momentum frame.

Show that:

$$
\left|\vec{p}^{*}\right|=\frac{c}{2 m_{1}} \sqrt{m_{1}^{4}+m_{2}^{4}+m_{3}^{4}-2 m_{1}^{2} m_{2}^{2}-2 m_{1}^{2} m_{3}^{2}-2 m_{2}^{2} m_{3}^{2}}
$$

S5 The π^{+}meson decays almost entirely via the two body decay process $\pi^{+} \rightarrow \mu^{+} \nu_{\mu}$ with an matrix element given by

$$
|\mathcal{M}|^{2}=G_{F}^{2} f_{\pi}^{2} m_{\mu}^{2}\left(m_{\pi}^{2}-m_{\mu}^{2}\right)
$$

where $G_{F}=1.166 \times 10^{-5} \mathrm{GeV}^{-2}$ is the Fermi constant, and f_{π} is related to the size of the pion wavefunction (the pion being a composite object).
(a) Obtain a formula for the $\pi^{+} \rightarrow \mu^{+} \nu_{\mu}$ decay rate, using the equations in question S4.
(b) Assuming $f_{\pi} \sim m_{\pi}$, calculate the pion lifetime in natural units and in seconds, and compare to the measured value. Note that $m_{\pi}=139.6 \mathrm{MeV}, m_{\mu}=$ $105.7 \mathrm{MeV}, \tau_{\pi}=2.6 \times 10^{-8} \mathrm{~s}$.
(c) By replacing m_{μ} by m_{e}, show that the rate of $\pi^{+} \rightarrow e^{+} \nu_{e}$ is 1.28×10^{-4} times smaller than the corresponding decay rate to muons. Show also that, on the basis of phase space alone (i.e. neglecting the factor $|\mathcal{M}|^{2}$), the decay rate to electrons would be expected to be greater than the rate to muons.

