Particle Physics - Problem Sheet 5

Discussion Questions

D1 (a) Draw a Feynman diagram illustrating Deep Inelastic Scattering (DIS) $e^-p \rightarrow e^-X$.

Four variables are defined to describe DIS:

$$x \equiv \frac{Q^2}{2p_2 \cdot q} \qquad Q^2 \equiv -q^2 = (p_1 - p_3)^2 > 0 \qquad \nu \equiv \frac{p_2 \cdot q}{M_p} \qquad y \equiv \frac{p_2 \cdot q}{p_2 \cdot p_1}$$

- (b) Show that $0 < x \le 1$. What does x represent?
- (c) Working in the proton rest frame, calculate a value for y and show that $0 \le y \le 1$. What does y represent?
- D2 (a) Draw the two main Feynman diagrams that contribute to the process $B^0 \rightarrow J/\psi K_S^0$ (one diagram is a so-called "penguin diagram"). What elements of the CKM matrix is this process sensitive to? Look up the quark content of each of the mesons - you are not expected to know this on the top of your head! " J/ψ " is a single meson.
 - (b) In November 2012, the LHCb collaboration at CERN observed the decay of the B_S meson into $\mu^+\mu^-$ for the first time with a branching ratio of $3.2^{+1.5}_{-1.2} \times 10^{-9}$. Draw a Feynman diagram for this decay. What elements of the CKM matrix is this process sensitive to?

Standard Questions

S1 (a) Determine the value of

$$R = \frac{\sigma(e^+e^- \to \text{hadrons})}{\sigma(e^+e^- \to \mu^+\mu^-)}$$

for CM energies, \sqrt{s} , of 2 GeV, 5 GeV, and 30 GeV.

- (b) What is the angular distribution of the jets produced by $e^+e^- \rightarrow$ hadrons?
- S2 (a) Write down the deep inelastic form factors $F_2(x)$ for electron-proton and electron-neutron scattering in terms of the valence quark parton density functions, u(x) and d(x). With the assumption that u(x) = 2d(x), what is the ratio of these form factors for large x?
 - (b) What is the effect on the form factors of the addition of the sea quark distributions, $\bar{u}(x)$, $\bar{d}(x)$, $\bar{s}(x)$ at low x? If the contribution of the valence quarks can be neglected at very small x, what is then the ratio of the neutron to proton form factors?
- S3 The Δ^{++} , Δ^{-} and Ω^{-} are members of the baryon decuplet.

- (a) Give the valence quark flavours and spins of these states.
- (b) Why is the existence of these baryons evidence for an antisymmetric color wavefunction?

$$\frac{1}{\sqrt{6}}[rgb - rbg + gbr - grb + brg - bgr]$$