Particle Physics - Problem Sheet 8

Discussion Questions

D1 The effective Higgs potential can be written as:

$$
V(\phi)=-\mu^{2} \phi^{\dagger} \phi+\lambda\left(\phi^{\dagger} \phi\right)^{2}
$$

and the vacuum Higgs field is written as a doublet:

$$
\phi=\binom{\phi^{+}}{\phi^{0}}=\frac{1}{\sqrt{2}}\binom{0}{v}
$$

(a) Show that the Higgs potential has a minimum with $\phi^{\dagger} \phi \neq 0$ only if $\mu^{2}>0$ and $\lambda>0$. (For the purposes of this discussion you should entertain the possibility that the constant μ^{2} could be less than 0 .)
(b) Consider an excitation of the field, $h(x)$, about the minimum:

$$
\phi=\binom{\phi^{+}}{\phi^{0}}=\frac{1}{\sqrt{2}}\binom{0}{v+h}
$$

Write out the expansion in powers of $h(x)$. Which term corresponds to the mass of the Higgs boson?
(c) What are the next two terms in the expansion? What do they represent?

D2 (a) Describe the possible parton-parton scattering processes in proton-proton collisions at the LHC.
(b) How are heavy quark pairs $b \bar{b}$ and $t \bar{t}$ produced?

Standard Questions

S1 In the Higgs mechanism and electroweak theory the following relationships apply:

$$
\begin{aligned}
m_{W}=\frac{v g_{W}}{2} & e=g_{W}^{\prime} \cos \theta_{W}=g_{W} \sin \theta_{W} \\
\cos \theta_{W}=\frac{g_{W}}{\sqrt{g_{W}^{2}+g_{W}^{2}}} & m_{Z}=\frac{1}{2} v \sqrt{g_{W}^{2}+g_{W}^{\prime 2}}
\end{aligned}
$$

Use the measured values of $m_{Z}=91.2 \mathrm{GeV}, m_{W}=80.4 \mathrm{GeV}$ and $\alpha=1 / 128$ to calculate the sin of the weak mixing angle, the values of the coupling constants and the vacuum expectation value.

S2 A Classic Question!
(a) Write down all the allowed final states of Z-boson decay.
(b) The width for each decays is:

$$
\Gamma(Z \rightarrow f \bar{f})=\frac{g_{W}^{2}\left[\left(c_{V}^{f}\right)^{2}+\left(c_{A}^{f}\right)^{2}\right]}{48 \pi \cos ^{2} \theta_{W}} m_{Z}=322\left[\left(c_{V}^{f}\right)^{2}+\left(c_{A}^{f}\right)^{2}\right][\mathrm{MeV}]
$$

Where $c_{V}^{f}=T_{3}-2 Q \sin ^{2} \theta_{W}$ is the vector coupling and $c_{A}^{f}=T_{3}$ is the axial-vector coupling. The measured values of $\sin ^{2} \theta_{W}$ is
Calculate the total width of the Z-boson and the branching ratios to the following experimentally observed final states:

- Each flavour of charged lepton: $e^{+} e^{-}, \mu^{+} \mu^{-}, \tau^{+} \tau^{-}$.
- Hadrons
- Nothing! (What particles give no signature in the detector?)

S3 Revision! Draw Feynman diagrams for each of these and decide whether each of the following decays is the result of a strong, electromagnetic or weak decay:

$$
\begin{aligned}
\rho^{0} & \rightarrow \pi^{+} \pi^{-} \quad K^{*+} \rightarrow K^{0} \pi^{+} \quad \eta \rightarrow \pi^{+} \pi^{-} \\
\eta & \rightarrow \gamma \gamma \quad \Sigma_{0} \rightarrow \Lambda \gamma \quad \Sigma^{+} \rightarrow n \pi^{+}
\end{aligned}
$$

