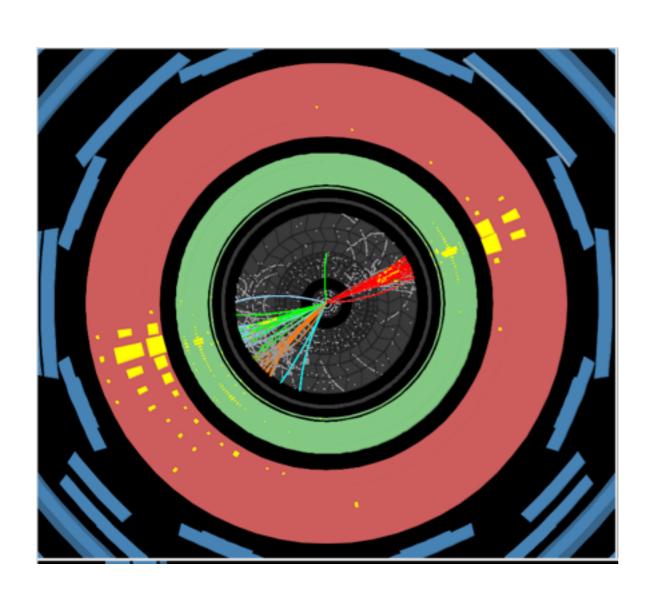
Particle Physics

Dr Victoria Martin, Spring Semester 2013 Lecture 9: Quantum Chromodynamics (QCD)



- **★**Colour charge and symmetry
- **★Gluons**
- **★QCD** Feynman Rules
- $\star q \overline{q} \rightarrow q \overline{q}$ scattering
- **★QCD** potential

Symmetries in Particle Physics

- The EM, Weak and Strong forces all display a property known as Gauge Symmetry.
- In QM, a symmetry is present if physical observables (e.g. cross section, decay widths) are invariant under the following change in the wavefunction:

$$\psi \to \psi' = \hat{U}\psi$$

• e.g. in electromagnetism, the physical observable fields E and B are independent of the value of the EM potential, A_{μ} :

$$A_{\mu} \to A'_{\mu} = A_{\mu} - \partial_{\mu}\chi$$
 $A_{\mu} = (V, \vec{A}) \text{ with } \vec{B} = \vec{\nabla} \times \vec{A}$

ullet The conditions on U are that U is unitary, and commutes with the Hamiltonian:

$$\hat{U}^{\dagger}\hat{U} = \mathbf{1} \qquad [\hat{U}, \hat{H}] = 0$$

ullet e.g. for EM, $\hat{U}=e^{i\phi}$ where ϕ is an arbitrary phase: $\psi o \psi'=e^{i\phi}\psi$

Symmetries in QED

- Instead of a global phase transformation $e^{i\phi}$ imagine a local phase transformation, where the phase $\phi \sim q \chi$ is a function of x^{μ} : $\chi(x^{\mu})$.
 - q is a constant (will be electric charge)

$$\psi \to \psi' = \hat{U}\psi = e^{iq\chi(x^{\mu})}\psi$$

ullet Substitute into Dirac Equation $(i\gamma^\mu\partial_\mu-m)\psi=0$

$$(i\gamma^{\mu}\partial_{\mu} - m)\psi' = 0$$

$$(i\gamma^{\mu}\partial_{\mu} - m)e^{iq\chi(x)}\psi = 0$$

$$i\gamma^{\mu}(e^{iq\chi(x)}\partial_{\mu}\psi + iq\partial_{\mu}\chi\psi) - me^{iq\chi(x)}\psi = 0$$

$$(i\gamma^{\mu}\partial_{\mu} - m)e^{iq\chi(x)}\psi - q\gamma^{\mu}\partial_{\mu}\chi\psi = 0$$

- An interaction term $-q\gamma^{\mu}\partial_{\mu}\chi\psi$ term appears in the Dirac Equation.
- To cancel this, modify the Dirac Equation for interacting fermions:

$$(i\gamma^{\mu}\partial_{\mu} + iqA_{\mu} - m)\psi = 0$$

With A^µ transforming as:

$$ullet$$
 $A_{\mu}
ightarrow A'_{\mu} = A_{\mu} - \partial_{\mu} \chi$ to cancel interaction term

Gauge Symmetry in QED & QCD

Demanding that QED is invariant by a local phase shift:

$$\psi \to \psi' = \hat{U}\psi = e^{iq\chi(x^{\mu})}\psi$$

Tells us that fermions interact with the photon field as:

$$q\gamma^{\mu}A_{\mu}\psi$$

• This invariance of QED under the local phase shift status is know as a local U(1) gauge symmetry.

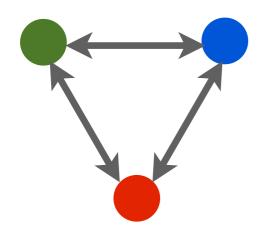
- Today we will see the consequences of a symmetry in QCD, but with a different symmetry, known as **SU(3)**.
 - QCD exhibits a local SU(3) gauge symmetry.

Colour Charge

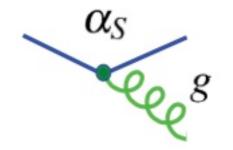
- Each quark carries a colour charge: red, blue or green.
- The coupling strength is the same for all three colours colours.
- To describe a quark, use a spinor plus a colour column vector:

$$r=\left(egin{array}{c}1\0\0\end{array}
ight) \qquad b=\left(egin{array}{c}0\1\0\end{array}
ight) \qquad g=\left(egin{array}{c}0\0\1\end{array}
ight)$$

 Mathematically, this is described by an SU(3) symmetry. QCD interactions are invariant under SU(3) rotations in colour space:



 Gluons responsible for exchanging momentum and colour between quarks.



- Each gluon contains colour and anticolour.
- Naively expect nine gluons:
 r r r r r b r g br b b b g g r g b g g
- However gluons are described by the generators of the SU(3) group, giving eight linear colour-anticolour combinations of these

Eight Gluons

 The Gell-Mann matrices describe the allowed colour configurations of gluons. (The Gell-Mann matrices are the generators of the SU(3) symmetry.)

$$\lambda^{1} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad \lambda^{2} = \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad \lambda^{3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\lambda^{4} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} \quad \lambda^{5} = \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{pmatrix} \quad \lambda^{6} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

$$\lambda^{7} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix} \quad \lambda^{8} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}$$

$$g^{i} = \begin{pmatrix} \mathbf{r} & \mathbf{b} & \mathbf{g} \end{pmatrix} \lambda^{i} \begin{pmatrix} \mathbf{r} \\ \mathbf{b} \\ \mathbf{g} \end{pmatrix}$$

$$g^{1} = \frac{1}{\sqrt{2}}(r\bar{b} + b\bar{r}) \quad g^{2} = \frac{i}{\sqrt{2}}(r\bar{b} - b\bar{r}) \quad g^{3} = \frac{1}{\sqrt{2}}(r\bar{r} - b\bar{b})$$

$$g^{4} = \frac{1}{\sqrt{2}}(r\bar{g} + g\bar{r}) \quad g^{5} = \frac{i}{\sqrt{2}}(r\bar{g} - g\bar{r}) \quad g^{6} = \frac{1}{\sqrt{2}}(b\bar{g} + g\bar{b})$$

$$g^{7} = \frac{i}{\sqrt{2}}(b\bar{g} - g\bar{b}) \quad g^{8} = \frac{1}{\sqrt{6}}(r\bar{r} + b\bar{b} - 2g\bar{g})$$

Feynman Rules for QCD

Internal Lines (propagators)

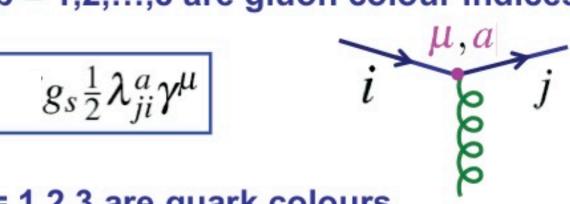
spin 1 gluon
$$\frac{-8\mu v}{q^2} \delta^4$$

$$\frac{g_{\mu\nu}}{q^2}\delta^{ab}$$
 a
 b

a, b = 1,2,...,8 are gluon colour indices

$$\alpha_S = \frac{g_S^2}{4\pi}$$

$$g_s \frac{1}{2} \lambda^a_{ji} \gamma^\mu$$



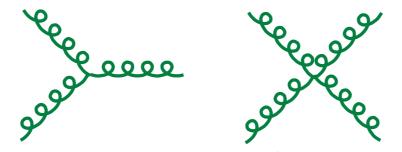
i, j = 1,2,3 are quark colours,

$$\lambda^a$$
 a = 1,2,...8 are the Gell-Mann SU(3) matrices

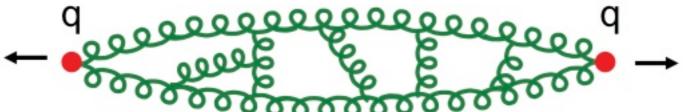
The λ^a_{ii} terms account for the quark colour

Gluon-Gluon Interactions

- Gluons also carry colour charge and can therefore self-interact.
- Two allowed possibilities:



- Gluon interactions are believed to give rise to colour confinement
 - Try to separate an electron-positron pair $V_{\rm QED}(r) = -\frac{q_2 \, q_1}{4\pi\epsilon_0 r} = -\frac{\alpha}{r}$
 - ullet Try to separate an quark anti-quark pair $V_{
 m QCD}(r) \sim \lambda r$

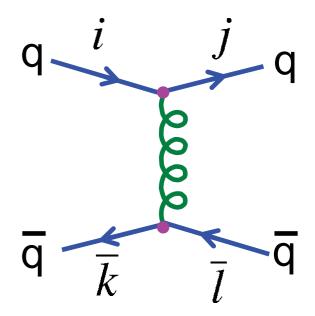


- A gluon flux tube of interacting gluons is formed. Energy $\sim 1 \text{ GeV/fm}$.
- Gluon-gluon interactions are responsible for holding quarks in mesons and baryons.

$qq \rightarrow qq$ scattering

- To write down the matrix element, follow the fermion arrows backwards.
 - \rightarrow For the quark line $j\rightarrow i$: λ_{ji} term at vertex
 - \rightarrow For the antiquark line $k \rightarrow l$: λ_{kl} term at vertex

$$\mathcal{M} = \left[\bar{u}_j \frac{g_S}{2} \lambda_{ji}^a \gamma^\mu u_i \right] \frac{g^{\mu\nu}}{q^2} \delta^{ab} \left[\bar{v}_k \frac{g_S}{2} \lambda_{kl}^b \gamma^\nu v_l \right]$$
$$\mathcal{M} = \frac{g_S^2}{q^2} \frac{\lambda_{ji}^a \lambda_{kl}^a}{4} \left[\bar{u}_j \gamma^\mu u_i \right] \left[\bar{v}_k \gamma^\mu v_l \right]$$



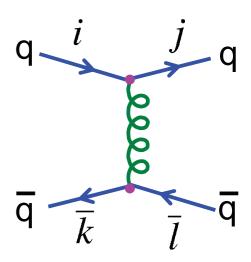
- The matrix element looks very similar to electromagnetic scattering except $e \rightarrow g_S$, and the addition of the terms $\lambda_{ji}^a \lambda_{kl}^a / 4$
- In the lowest order approximation, the dynamics of the $q\overline{q} \rightarrow q\overline{q}$ scattering is the same as electromagnetic $e^+e^-\rightarrow e^+e^-$ scattering.
- ullet Describe in terms of Coloumb-like potential $V_{qar q}=-rac{flpha_S}{r}$
- The colour factor $f=\frac{1}{4}\lambda^a_{ji}\lambda^a_{kl}=\frac{1}{4}\sum_a\lambda^a_{ji}\lambda^a_{kl}$ is a sum over elements in the λ matrices.

Colour Factor for $q \overline{q} \rightarrow q \overline{q}$

Need to calculate the colour factor

$$f = \frac{1}{4}\lambda_{ji}^a \lambda_{kl}^a = \frac{1}{4} \sum_a \lambda_{ji}^a \lambda_{kl}^a$$

• For the calculation we choose colours for q and \overline{q} . As the theory is invariant under rotations in colour space any choice of colours will give the same answer.



• Three colour options:

1.
$$i=1$$
 $k=\overline{1} \rightarrow j=1$ $l=\overline{1}$ e.g. $r\overline{r} \rightarrow r\overline{r}$ $f_1 = \frac{1}{4} \sum_a \lambda_{11}^a \lambda_{11}^a$
2. $i=1$ $k=\overline{2} \rightarrow j=1$ $l=\overline{2}$ e.g. $r\overline{b} \rightarrow r\overline{b}$ $f_2 = \frac{1}{4} \sum_a \lambda_{11}^a \lambda_{22}^a$
3. $i=1$ $k=\overline{1} \rightarrow j=2$ $l=\overline{2}$ e.g. $r\overline{r} \rightarrow b\overline{b}$ $f_3 = \frac{1}{4} \sum_a \lambda_{21}^a \lambda_{12}^a$

• Calculate option 2. The only matrices with non-zero element in the redred (11) and blue-blue (22) elements are λ^3 and λ^8 .

$$f_2 = \frac{1}{4} \sum_a \lambda_{11}^a \lambda_{22}^a = \frac{1}{4} [\lambda_{11}^3 \lambda_{22}^3 + \lambda_{11}^8 \lambda_{22}^8] = \frac{1}{4} [(1)(-1) + (\frac{1}{\sqrt{3}})(\frac{1}{\sqrt{3}})] = -\frac{1}{6}$$

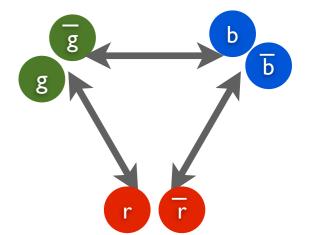
Similarly,

$$f_1 = \frac{1}{4} \sum_a \lambda_{11}^a \lambda_{11}^a = \frac{1}{4} [\lambda_{11}^3 \lambda_{11}^3 + \lambda_{11}^8 \lambda_{11}^8] = \frac{1}{4} [(1)(1) + (\frac{1}{\sqrt{3}})(\frac{1}{\sqrt{3}})] = \frac{1}{3}$$

$$f_3 = \frac{1}{4} \sum_a \lambda_{21}^a \lambda_{12}^a = \frac{1}{4} (\lambda_{21}^1 \lambda_{12}^1 + \lambda_{12}^2 \lambda_{21}^2) = \frac{1}{4} [(-i)(i) + (1)(1)] = \frac{1}{2}$$

Colour Factor for Mesons

- Mesons are colourless $q\overline{q}$ states in a "colour singlet": $r\overline{r} + g\overline{g} + b\overline{b}$
- Calculate colour factor for $q\overline{q} \rightarrow q\overline{q}$ scattering in a meson.

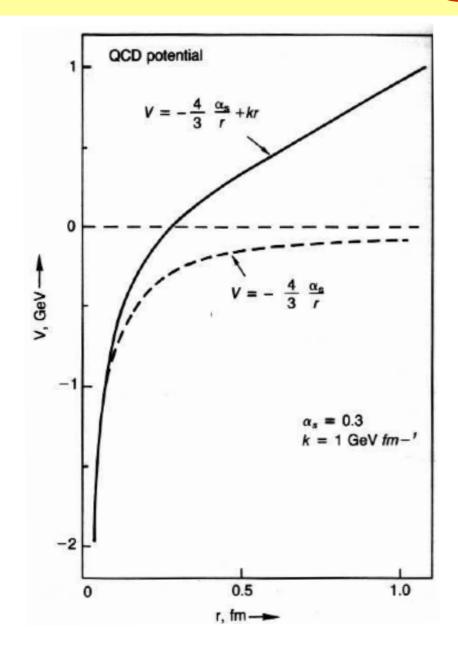


- Two possibilities for colour combinations:
 - ightharpoonup Quarks stay the same colour e.g. $r r \rightarrow r r f_1 = \frac{1}{3}$
 - ightharpoonup Quarks change colour e.g. $r r
 ightharpoonup b \overline{b}$ and $r r
 ightharpoonup g \overline{g}$ each contributes $f_3 = \frac{1}{2}$
- Sum over all possible final states for $r \to q \bar{q}$ gives $f_r = \frac{1}{3} + \frac{1}{2} + \frac{1}{2} = \frac{4}{3}$
- Average over all possible initial states, $r\bar{r}$, $g\bar{g}$, $b\bar{b}$:

$$f = \frac{1}{3} \left(\frac{r}{r} \rightarrow q\overline{q} + g\overline{g} \rightarrow q\overline{q} + b\overline{b} \rightarrow q\overline{q} \right) = \frac{1}{3} \left(\frac{4}{3} + \frac{4}{3} + \frac{4}{3} \right) = \frac{4}{3}$$

- The colour factor for the $q\bar{q}$ interactions within a meson is 4/3
 - ullet The potential within a meson (to lowest order) is: $V_{qar q} = -rac{4}{3}rac{lpha_S}{r}$

QCD Potential



At large distances: gluon-gluon interactions

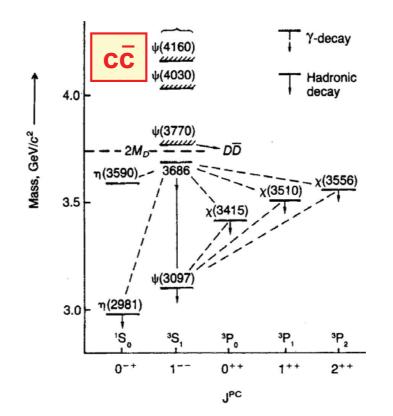
$$V_{\rm QCD}(r) \sim \lambda r$$

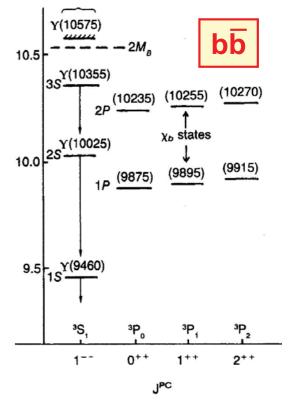
• At short distances: $q\overline{q} \rightarrow q\overline{q}$ scattering

$$V_{q\bar{q}} = -\frac{4}{3} \frac{\alpha_S}{r}$$

• Overall potential is:

$$V_{\rm QCD}(r) = -\frac{4}{3} \frac{\alpha_S}{r} + \lambda r$$





This model provides a good description of the bound states of heavy quarks:

- charmonium ($c\overline{c}$)
- bottomonium (b \overline{b})