Particle Physics

Dr Victoria Martin, Spring Semester 2012 Lecture 7: Renormalisation and Weak Force

\star Renormalisation in QED

* Weak Charged Current
$\star \boldsymbol{V}-\boldsymbol{A}$ structure of \boldsymbol{W}-boson interactions
\star Muon decay
* Beta decay
* Weak Neutral Current
\star Neutrino scattering

Reminders

- No lecture on Friday.
- Next tutorial: Monday 11th February.
- New tutorial sheet will be posted to webpage. Paper copies available at tutorial
- Next lecture: Tuesday 12th February!

Higher Order QED

Two photon "box" diagrams also contribute to QED scattering

Two extra vertices \Rightarrow contribution is suppress by a factor of $\alpha=\mathbf{1} / \mathbf{1 3 7}$

- The four momentum must be conserved at each vertex.
- However, four momentum \boldsymbol{k} flowing round the loop can be anything!
- In calculating \mathcal{M} integrate over all possible allowed momentum configurations: $\int f(k) d^{4} k \sim \ln (k)$ leads to a divergent integral!
- This is solved by renormalisation in which the infinities are "miraculously swept up into redefinitions of mass and charge" (Aitchison \& Hey P.51)

Renormalisation

- Impose a "cutoff" mass M, do not allow the loop four momentum to be larger than \boldsymbol{M}. Use $\boldsymbol{M}^{2} \gg \boldsymbol{q}^{2}$, the momentum transferred between initial and final state.
\Rightarrow This can be interpreted as a limit on the shortest range of the interaction
\Rightarrow Or interpreted as possible substructure in pointlike fermions
\Rightarrow Physical amplitudes should not depend on choice of \boldsymbol{M}
- Find that $\boldsymbol{\operatorname { l n }}\left(\boldsymbol{M}^{2}\right)$ terms appear in the \mathcal{M}
- Absorb $\ln \left(M^{2}\right)$ into redefining fermion masses and vertex couplings
\Rightarrow Masses $\mathbf{m}\left(\boldsymbol{q}^{2}\right)$ and couplings $\alpha\left(\boldsymbol{q}^{2}\right)$ are now functions of \boldsymbol{q}^{2}
- e.g. Renormalisation of electric charge (considering only effects from one type of fermion):

$$
e_{R}=e \sqrt{1-\frac{e^{2}}{12 \pi^{2}} \ln \left(\frac{M^{2}}{q^{2}}\right)}
$$

- Can be interpreted as a "screening" correction due to the production of electron/positron pairs in a region
 round the primary vertex
- e_{R} is the effective charge we actually measure!

Running Coupling Constant

- Renormalise α, and correct for all possible fermion types in the loop:

$$
\alpha\left(q^{2}\right)=\alpha(0)\left(1+\frac{\alpha(0)}{3 \pi} z_{f} \ln \left(\frac{-q^{2}}{M^{2}}\right)\right)
$$

- z_{f} is the sum of charges over all possible fermions in the loop
\Rightarrow At $q^{2} \sim \mathbf{1} \mathbf{~ M e V}$ only electron, $z_{f}=1$
\Rightarrow At $\boldsymbol{q}^{2} \sim \mathbf{1 0 0} \mathbf{~ G V V}, \boldsymbol{f}=\boldsymbol{e}, \boldsymbol{\mu}, \tau, \mathbf{u}, \mathbf{d} \mathbf{, s , \mathbf { s } , \mathbf { b }} \boldsymbol{z}_{f}=\mathbf{3 8 / 9}, z_{f}=\sum_{f} Q_{f}^{2}$
- Instead of using \boldsymbol{M}^{2} dependence, replace with a reference value μ^{2} :

$$
\alpha\left(q^{2}\right)=\alpha\left(\mu^{2}\right)\left(1-\frac{\alpha\left(\mu^{2}\right)}{3 \pi} z_{f} \ln \left(\frac{q^{2}}{\mu^{2}}\right)\right)^{-1}
$$

- Usual choices for $\boldsymbol{\mu}$ are $\mathbf{1 ~ M e V}$ or $\mathrm{m}_{z} \sim \mathbf{9 1} \mathbf{~ G e V}$.
$\Rightarrow \alpha\left(\mu^{2}=1 \mathrm{MeV}^{2}\right)=1 / 137$
$\Rightarrow \alpha\left(\mu^{2}=(91 \mathrm{GeV})^{2}\right)=\mathbf{1 / 1 2 8}$
- We choose a value of μ where make a initial measurement of α, but once we do the evolution of the values of α are determined by the above eqn.

QED Summary

- For full QED calculations use spinors to define fermion current in Feynman diagrams.
- Fermion current are $\bar{\psi} \gamma^{\mu} \psi$ where $\bar{\psi}$ is the adjoint spinor: $\bar{\psi} \equiv \psi^{\dagger} \gamma^{0}$
- Spin-1 bosons are described by polarisation vectors, $\varepsilon^{\mu}(\boldsymbol{s})$
- To calculate the cross section for an unpolarised process need to average over initial helicities and sum over all possible final states.
- Fermion masses, charges and the coupling constant $\boldsymbol{\alpha}$ evolve as a function of momentum transfer.

spin 1
photon

$$
\frac{g_{\mu \nu}}{q^{2}}
$$

- Vertex Factors
spin $1 / 2$
fermion (charge - $|e|$)
$e \gamma^{\mu}$

The Weak Force

- Exchange of massive W and Z bosons.
- $\mathrm{m}_{W}=80.385 \pm 0.015 \mathrm{GeV}$
$\bullet \mathrm{m}_{Z}=91.1876 \pm 0.0021 \mathrm{GeV}$

- Responsible for:
- Beta decay
- Fusion
- Neutrino interactions

Review: Baryon and Lepton Number; Chirality

- Lepton number is the number of leptons minus the number of anti-leptons:
\Rightarrow Electron number: $\quad L_{\mathrm{e}}=\mathbf{N}\left(e^{-}\right)-\mathbf{N}\left(e^{+}\right)+\mathbf{N}\left(v_{e}\right)-\mathbf{N}\left(\overline{v_{e}}\right)$
\Rightarrow Muon number: $\quad L_{\mu}=\mathbf{N}\left(\mu^{-}\right)-\mathbf{N}\left(\mu^{+}\right)+\mathbf{N}\left(v_{\mu}\right)-\mathbf{N}\left(\overline{v_{\mu}}\right)$
\Rightarrow Tau-lepton number: $L_{\tau}=\mathbf{N}\left(\tau^{-}\right)-\mathbf{N}\left(\tau^{+}\right)+\mathbf{N}\left(\nu_{\tau}\right)-\mathbf{N}\left(\overline{\nu_{\tau}}\right)$
- Baryon number is a measure of the net number of quarks:
$\mathcal{B}=1 / 3(\mathbf{N}(q)-\mathbf{N}(\bar{q}))$

$\substack{\text { maseme } \\ \text { samm }}$	$\mathrm{u}^{3 / 2} \mathbf{C}$	γ
	cham top	
	d	g
	2w	
		Z
	$\left.\mathrm{e} \quad \mu\right\|^{\frac{1}{12}} \boldsymbol{1}$	${ }^{W}$

- LH projection operator $P_{L}=\left(1-\gamma^{5}\right) / 2$ projects out left-handed chiral state
- RH projection operator $P_{R}=\left(1+\gamma^{5}\right) / 2$ projects out right-handed chiral state
- Massive fermions have both left-handed and right-handed chiral components
- Massless fermions would have only left-handed components
- Massless anti-fermions would have only right-handed components
- To date, only left-handed neutrinos and right-handed anti-neutrinos have been observed

W and Z boson interactions

- Any fermion (quark, lepton) may emit or absorb a Z-boson.
\Rightarrow That fermion will remain the same flavour.
\Rightarrow Very similar to QED, but neutrinos can interact with a Z boson too.

- Any fermion (quark, lepton) may emit or absorb a W-boson.
\Rightarrow To conserve electric charge that fermion must change flavour!
\Rightarrow To conserve lepton number $\boldsymbol{e} \leftrightarrow \boldsymbol{v}_{\boldsymbol{e}}, \boldsymbol{\mu} \leftrightarrow \boldsymbol{v}_{\boldsymbol{\mu}}, \boldsymbol{\tau} \leftrightarrow \boldsymbol{v}_{\boldsymbol{\tau}}$
\Rightarrow To conserve baryon number (d, s, b) $\leftrightarrow(\mathbf{u}, \mathbf{c}, \mathbf{t})$

$$
\text { down-type quark } \leftrightarrow \text { up-type quark }
$$

Feynman Rules for Charged Current

	propagator μ^{\prime}	interaction vertex
W-boson	$\frac{g_{\mu \nu}}{q^{2}-m_{W}^{2}}$	$\frac{1}{2 \sqrt{2}} g_{W} \gamma^{\mu}\left(1-\gamma^{5}\right)$
photon, γ	$\frac{g_{\mu \nu}}{q^{2}}$	$e \gamma^{\mu}$

- Left-handed interactions are also known as $\boldsymbol{V}-\boldsymbol{A}$ theory
$\Rightarrow \gamma^{\mu}$ gives a vector current (\boldsymbol{V})
$\Rightarrow \gamma^{\mu} \gamma^{5}$ gives an axial vector current (A)
- Photon interactions are purely vector
- Key differences w.r.t QED.
$\Rightarrow \boldsymbol{q}^{2}-\boldsymbol{m}_{W^{2}}$ as denominator of propagator
\Rightarrow The $1 / 2\left(1-\gamma^{5}\right)$ term: this is observed experimentally.
- The overall factor of $\mathbf{1} / \sqrt{ } \mathbf{8}$ is conventional
- Recall $P_{L}=\left(1-\gamma^{5}\right) / 2$ is the Left Handed projection operator
$\Rightarrow \boldsymbol{W}$-boson interactions only act on left-handed chiral components of fermions
- For low energy interactions with $\boldsymbol{q} \ll \boldsymbol{m}_{W}$: effective propagator is $\boldsymbol{g}_{\boldsymbol{w} v} \boldsymbol{m}_{W^{2}}$

"Inverse Muon Decay"

- Start with a calculation of the process $\boldsymbol{v}_{\boldsymbol{\mu}} \boldsymbol{e}^{-} \rightarrow \boldsymbol{\mu}^{-} \boldsymbol{v}_{\boldsymbol{e}}$
- Not an easy process to measure experimentally, but easy to calculate!
$\mathcal{M}=\frac{g_{W}^{2}}{8} \bar{u}\left(\nu_{e}\right) \gamma^{\mu}\left(1-\gamma^{5}\right) u\left(e^{-}\right) \frac{g_{\mu \nu}}{q^{2}-m_{W}^{2}} u\left(\nu_{\mu}\right) \gamma^{\nu}\left(1-\gamma^{5}\right) u(\mu)$

$|\mathcal{M}|^{2}=\left(\frac{g_{W}^{2}}{8 m_{W}^{2}}\right)^{2}\left[\bar{u}\left(\nu_{e}\right) \gamma^{\mu}\left(1-\gamma^{5}\right) u\left(e^{-}\right)\right]^{2}\left[\bar{u}(\mu) \gamma^{\mu}\left(1-\gamma^{5}\right) u\left(\nu_{\mu}\right)\right]^{2}$
- Usually we would average over initial spin and sum over final spin states:
- However the neutrinos are only left handed
- The equation can be solved as (see Griffiths section 9.1):

$$
|\mathcal{M}|^{2}=2\left(\frac{g_{W}^{2}}{m_{W}^{2}}\right)^{2}\left(p^{\mu}(e) \cdot p^{\mu}\left(\nu_{\mu}\right)\right)\left(p^{\mu}(\mu) \cdot p^{\mu}\left(\nu_{e}\right)\right)
$$

- In the CM frame, where \boldsymbol{E} is energy of initial electron or neutrino, and $\boldsymbol{m}_{\boldsymbol{e}}$ neglected as $\boldsymbol{m}_{e} \ll E$:

$$
|\mathcal{M}|^{2}=8 E^{4}\left(\frac{g_{W}^{2}}{m_{W}^{2}}\right)^{2}\left(1-\frac{m_{\mu}^{2}}{2 E^{2}}\right)^{2}
$$

"Inverse Muon Decay" Cross Section

- Cross section $=|\mathcal{M}|^{2} \rho$, substituting for ρ (see problem sheet 1):

$$
\frac{d \sigma}{d \Omega}=\left(\frac{1}{8 \pi}\right)^{2} \frac{S|\mathcal{M}|^{2}}{\left(E_{1}+E_{2}\right)^{2}} \frac{\left|\vec{p}_{f}^{*}\right|}{\left|\vec{p}_{i}^{*}\right|}
$$

- Substitute:
\Rightarrow centre of mass energy, $\left(E_{1}+E_{2}\right)^{2}=4 E^{2}$

\Rightarrow For elastic scattering particle $\left|p^{*} f\right|=\left|\boldsymbol{p}_{i}\right|$
$\Rightarrow S=1$ as no identical particles in final state

$$
\frac{d \sigma}{d \Omega}=\frac{E^{2}}{32 \pi^{2}}\left(\frac{g_{W}^{2}}{m_{W}^{2}}\right)^{2}\left(1-\frac{m_{\mu}^{2}}{2 E^{2}}\right)^{2}
$$

\Rightarrow Fermi coupling constant $G_{F}=\sqrt{ } 2 g_{W^{2}} / 8 \boldsymbol{m}_{W^{2}}$
\Rightarrow Unlike electromagnetic interaction, no angular dependence
\Rightarrow Integral over 4π solid angle

$$
\sigma=\int \frac{d \sigma}{d \Omega} d \Omega=\frac{4}{\pi} E^{2} G_{F}^{2}\left(1-\frac{m_{\mu}^{2}}{2 E^{2}}\right)^{2}
$$

Muon Decay

- Muon decay: $\boldsymbol{\mu}^{-} \rightarrow \boldsymbol{e}^{-} \overline{\boldsymbol{v}}_{\boldsymbol{e}} \boldsymbol{\nu}_{\boldsymbol{\mu}}$ (Griffiths 9.2):

$$
\begin{aligned}
|\mathcal{M}|^{2} & =\left(\frac{g_{W}^{2}}{8 m_{W}^{2}}\right)^{2}\left[\bar{u}\left(\nu_{\mu}\right) \gamma^{\mu}\left(1-\gamma^{5}\right) u(\mu)\right]^{2}\left[\bar{u}(e) \gamma^{\mu}\left(1-\gamma^{5}\right) v\left(\bar{\nu}_{e}\right)\right]^{2^{g}} \\
& =2\left(\frac{g_{W}^{2}}{m_{W}^{2}}\right)^{2}\left(p^{\mu}(e) \cdot p^{\mu}\left(\nu_{\mu}\right)\right)\left(p^{\mu}(\mu) \cdot p^{\mu}\left(\nu_{e}\right)\right)
\end{aligned}
$$

- The phase space, ρ, for a $1 \rightarrow 3$ decay is, (Griffiths equation 6.21):

$$
\frac{d \Gamma}{d E_{e}}=\frac{1}{4 \pi^{3}}\left(\frac{\sqrt{2} g_{W}^{2}}{8 M_{W}^{2}}\right)^{2} m_{\mu}^{2} E_{e}^{2}\left(1-\frac{4 E_{e}}{3 m_{\mu}^{2}}\right)
$$

- Integrate over allowed values of $\boldsymbol{E}_{\boldsymbol{e}}$:

$$
\Gamma=\int_{0}^{m_{\mu} / 2} \frac{d \Gamma}{d E_{e}} d E_{e}=\frac{G_{F}^{2} m_{\mu}^{2}}{4 \pi^{3}} \int_{0}^{m_{\mu} / 2} E_{e}^{2}\left(1-\frac{4 E_{e}}{3 m_{\mu}^{2}}\right) d E_{e}=\frac{G_{F}^{2} m_{\mu}^{5}}{192 \pi^{3}}
$$

- Only muon decay mode for muons $\operatorname{BR}\left(\mu^{-} \rightarrow \boldsymbol{e}^{-} \boldsymbol{v}_{e} \boldsymbol{v}_{\mu}\right) \approx \mathbf{1 0 0 \%}$, only one decay mode contributes to lifetime

$$
\tau \equiv \frac{1}{\Gamma}=\frac{192 \pi^{3}}{G_{F}^{2} m_{\mu}^{5}}=\frac{192 \pi^{3} \hbar^{7}}{G_{F}^{2} m_{\mu}^{5} c^{4}}
$$

Muon Decay Measurements

- TWIST experiment at TRIMF in Canada measures μ ${ }^{+} \rightarrow \boldsymbol{e}^{+} \boldsymbol{v}_{e} \bar{v}_{\mu}$ decay spectrum.
- Excellent agreement between data and prediction!
- Measurements of muon lifetime and mass used to define a value for $\boldsymbol{G}_{\boldsymbol{F}}$ (values from PDG 2010)

$$
\begin{aligned}
& \Rightarrow \tau=(2.19703 \pm 0.00002) \times 10^{6} \mathrm{~s} \\
& \Rightarrow \mathrm{~m}=105.658367 \pm 0.000004 \mathrm{MeV}
\end{aligned}
$$

- Applying small corrections for finite electron mass and second order effects

$$
\Rightarrow G_{F}=1.166364(5) \times 10^{-5} \mathrm{GeV}^{-2}
$$

- Implies $\mathbf{g}_{w}=0.653, \alpha_{w}=\mathbf{g}_{w}{ }^{2} / 4 \pi=1 / 29.5$
- $\alpha_{W} \gg \alpha_{\mathrm{EM}}$, the weak force not intrinsically weak, just appears so due to mass of \boldsymbol{W}-boson

Summary

Renormalisation

- QED: Photons and fermions can appear in loops. Effectively modifying coupling (effective charge) and masses of fermions.
- This leads to running coupling α as a function of energy of scattering q.
- This happens in QED, Weak and QCD

Weak Charged Current

- Carried by the massive \boldsymbol{W}-boson: acts on all quarks and leptons. $\frac{g_{\mu \nu}}{q^{2}-m_{W}^{2}}$
- A \boldsymbol{W}-boson interaction changes the flavour of the fermion.
- Acts only on the left-handed components of the fermions: $\boldsymbol{V}-\boldsymbol{A}$ structure.

$$
\bar{u}\left(\nu_{e}\right) \gamma^{\mu}\left(1-\gamma^{5}\right) u\left(e^{-}\right)
$$

- At low energy, responsible for muon \& tau decay, beta decay...

Weak Neutral Current

- Carried by the massive \boldsymbol{Z}-boson: acts on all quarks and leptons. $\frac{g_{\mu \nu}}{q^{2}-m_{Z}^{2}}$
- No flavour changes observed.

$$
\bar{u}(e) \gamma^{\mu}\left(c_{V}^{e}-c_{A}^{e} \gamma^{5}\right) u(e)
$$

- At low energies, responsible for neutrino scattering

