Particle Physics

Dr Victoria Martin, Spring Semester 2013

 Lecture 8: Calculating the Weak Force and
\star Muon decay
\star Beta decay
*Weak Neutral Current
\star Neutrino scattering
*Symmetries in PP

W and Z boson interactions

- Any fermion (quark, lepton) may emit or absorb a Z-boson.
\Rightarrow That fermion will remain the same flavour.
\Rightarrow Very similar to QED, but neutrinos can interact with a Z boson too.

- Any fermion (quark, lepton) may emit or absorb a W-boson.
\Rightarrow To conserve electric charge that fermion must change flavour!
\Rightarrow To conserve lepton number $\boldsymbol{e} \leftrightarrow \boldsymbol{v}_{\boldsymbol{e}}, \boldsymbol{\mu} \leftrightarrow \boldsymbol{v}_{\boldsymbol{\mu}}, \boldsymbol{\tau} \leftrightarrow \boldsymbol{v}_{\tau}$
\Rightarrow To conserve baryon number (d, s, b) $\leftrightarrow(\mathbf{u}, \mathbf{c}, \mathbf{t})$

$$
\text { down-type quark } \leftrightarrow \text { up-type quark }
$$

Feynman Rules for Charged Current

	propagator μ^{\prime}	interaction vertex
W-boson	$\frac{g_{\mu \nu}}{q^{2}-m_{W}^{2}}$	$\frac{1}{2} g_{W} \gamma^{\mu}\left(1-\gamma^{5}\right)$
photon, γ	$\frac{g_{\mu \nu}}{q^{2}}$	$e \gamma^{\mu}$

- Left-handed interactions are also known as $\boldsymbol{V}-\boldsymbol{A}$ theory
$\Rightarrow \gamma^{\mu}$ gives a vector current (\boldsymbol{V})
$\Rightarrow \gamma^{\mu} \gamma^{5}$ gives an axial vector current (A)
- Photon interactions are purely vector
- Key differences w.r.t QED.
$\Rightarrow \boldsymbol{q}^{2}-\boldsymbol{m}_{W^{2}}$ as denominator of propagator
\Rightarrow The $1 / 2\left(1-\gamma^{5}\right)$ term: this is observed experimentally.
- The overall factor of $\mathbf{1} / \sqrt{ } \mathbf{8}$ is conventional
- Recall $P_{L}=\left(1-\gamma^{5}\right) / 2$ is the Left Handed projection operator
$\Rightarrow \boldsymbol{W}$-boson interactions only act on left-handed chiral components of fermions
- For low energy interactions with $\boldsymbol{q} \ll \boldsymbol{m}_{W}$: effective propagator is $\boldsymbol{g}_{\boldsymbol{\mu v}} / \boldsymbol{m}_{W^{2}}$

"Inverse Muon Decay"

- Start with a calculation of the process $\boldsymbol{\nu}_{\boldsymbol{\mu}} \boldsymbol{e}^{-} \rightarrow \boldsymbol{\mu}^{-} \boldsymbol{\nu}_{\boldsymbol{e}}$
- Not an easy process to measure experimentally, but easy to calculate!
$\mathcal{M}=\frac{g_{W}^{2}}{8} \bar{u}\left(\nu_{e}\right) \gamma^{\mu}\left(1-\gamma^{5}\right) u\left(e^{-}\right) \frac{g_{\mu \nu}}{q^{2}-m_{W}^{2}} \bar{u}(\mu) \gamma^{\nu}\left(1-e^{\boldsymbol{e}^{5}}\right) u\left(\nu_{\mu}\right)$
$|\mathcal{M}|^{2}=\left(\frac{g_{W}^{2}}{8 m_{W}^{2}}\right)^{2}\left[\bar{u}\left(\nu_{e}\right) \gamma^{\mu}\left(1-\gamma^{5}\right) u\left(e^{-}\right)\right]^{2}\left[\bar{u}(\mu) \gamma^{\mu}\left(1-\gamma^{5}\right) u\left(\nu_{\mu}\right)\right]^{2}$
- Usually we would average over initial spin and sum over final spin states:
- However the neutrinos are only left handed
- The equation can be solved as (see Griffith section 9.1):

$$
|\mathcal{M}|^{2}=2\left(\frac{g_{W}^{2}}{m_{W}^{2}}\right)^{2}\left(p^{\mu}(e) \cdot p^{\mu}\left(\nu_{\mu}\right)\right)\left(p^{\mu}(\mu) \cdot p^{\mu}\left(\nu_{e}\right)\right)
$$

- In the CM frame, where \boldsymbol{E} is energy of initial electron or neutrino, and $\boldsymbol{m}_{\boldsymbol{e}}$ neglected as $\boldsymbol{m}_{e} \ll \boldsymbol{E}$:

$$
|\mathcal{M}|^{2}=8 E^{4}\left(\frac{g_{W}^{2}}{m_{W}^{2}}\right)^{2}\left(1-\frac{m_{\mu}^{2}}{2 E^{2}}\right)^{2}
$$

"Inverse Muon Decay" Cross Section

- Cross section $=|\mathcal{M}|^{2} \rho$, substituting for ρ (see problem sheet 1):

$$
\frac{d \sigma}{d \Omega}=\left(\frac{1}{8 \pi}\right)^{2} \frac{S|\mathcal{M}|^{2}}{\left(E_{1}+E_{2}\right)^{2}} \frac{\left|\vec{p}_{f}^{*}\right|}{\left|\vec{p}_{i}^{*}\right|}
$$

- Substitute:
\Rightarrow centre of mass energy, $\left(E_{1}+E_{2}\right)^{2}=4 E^{2}$

\Rightarrow For elastic scattering particle $\left|p^{*} f\right|=\left|\boldsymbol{p}_{i}\right|$
$\Rightarrow S=1$ as no identical particles in final state

$$
\frac{d \sigma}{d \Omega}=\frac{E^{2}}{32 \pi^{2}}\left(\frac{g_{W}^{2}}{m_{W}^{2}}\right)^{2}\left(1-\frac{m_{\mu}^{2}}{2 E^{2}}\right)^{2}
$$

\Rightarrow Fermi coupling constant $G_{F}=\sqrt{ } 2 g_{W^{2}} / 8 \boldsymbol{m}_{W^{2}}$
\Rightarrow Unlike electromagnetic interaction, no angular dependence
\Rightarrow Integral over 4π solid angle

$$
\sigma=\int \frac{d \sigma}{d \Omega} d \Omega=\frac{4}{\pi} E^{2} G_{F}^{2}\left(1-\frac{m_{\mu}^{2}}{2 E^{2}}\right)^{2}
$$

Muon Decay

- Muon decay: $\boldsymbol{\mu}^{-} \rightarrow \boldsymbol{e}^{-} \overline{\boldsymbol{v}}_{\boldsymbol{e}} \boldsymbol{\nu}_{\boldsymbol{\mu}}$ (Griffiths 9.2):

$$
\begin{aligned}
|\mathcal{M}|^{2} & =\left(\frac{g_{W}^{2}}{8 m_{W}^{2}}\right)^{2}\left[\bar{u}\left(\nu_{\mu}\right) \gamma^{\mu}\left(1-\gamma^{5}\right) u(\mu)\right]^{2}\left[\bar{u}(e) \gamma^{\mu}\left(1-\gamma^{5}\right) v\left(\bar{\nu}_{e}\right)\right]^{2^{g}} \\
& =2\left(\frac{g_{W}^{2}}{m_{W}^{2}}\right)^{2}\left(p^{\mu}(e) \cdot p^{\mu}\left(\nu_{\mu}\right)\right)\left(p^{\mu}(\mu) \cdot p^{\mu}\left(\nu_{e}\right)\right)
\end{aligned}
$$

- The phase space, ρ, for a $1 \rightarrow 3$ decay is, (Griffiths equation 6.21):

$$
\frac{d \Gamma}{d E_{e}}=\frac{1}{4 \pi^{3}}\left(\frac{\sqrt{2} g_{W}^{2}}{8 M_{W}^{2}}\right)^{2} m_{\mu}^{2} E_{e}^{2}\left(1-\frac{4 E_{e}}{3 m_{\mu}^{2}}\right)
$$

- Integrate over allowed values of $\boldsymbol{E}_{\boldsymbol{e}}$:

$$
\Gamma=\int_{0}^{m_{\mu} / 2} \frac{d \Gamma}{d E_{e}} d E_{e}=\frac{G_{F}^{2} m_{\mu}^{2}}{4 \pi^{3}} \int_{0}^{m_{\mu} / 2} E_{e}^{2}\left(1-\frac{4 E_{e}}{3 m_{\mu}^{2}}\right) d E_{e}=\frac{G_{F}^{2} m_{\mu}^{5}}{192 \pi^{3}}
$$

- Only muon decay mode for muons $\operatorname{BR}\left(\boldsymbol{\mu}^{-} \rightarrow \boldsymbol{e}^{-} \bar{v}_{e} \boldsymbol{v}_{\mu}\right) \approx \mathbf{1 0 0 \%}$, only one decay mode contributes to lifetime

$$
\tau \equiv \frac{1}{\Gamma}=\frac{192 \pi^{3}}{G_{F}^{2} m_{\mu}^{5}}=\frac{192 \pi^{3} \hbar^{7}}{G_{F}^{2} m_{\mu}^{5} c^{4}}
$$

Muon Decay Measurements

- TWIST experiment at TRIMF in Canada measures μ ${ }^{+} \rightarrow \boldsymbol{e}^{+} \boldsymbol{v}_{e} \bar{v}_{\mu}$ decay spectrum.
- Excellent agreement between data and prediction!
- Measurements of muon lifetime and mass used to define a value for $\boldsymbol{G}_{\boldsymbol{F}}$ (values from PDG 2010)

$$
\begin{aligned}
& \Rightarrow \tau=(2.19703 \pm 0.00002) \times 10^{-6} \mathrm{~s} \\
& \Rightarrow \mathrm{~m}=105.658367 \pm 0.000004 \mathrm{MeV}
\end{aligned}
$$

- Applying small corrections for finite electron mass and second order effects

$$
\Rightarrow G_{F}=1.166364(5) \times 10^{-5} \mathrm{GeV}^{-2}
$$

- Implies $\mathbf{g}_{w}=0.653, \alpha_{w}=\mathrm{g}_{\mathbf{w}}{ }^{2} / 4 \pi=1 / 29.5$
- $\alpha_{W} \gg \alpha_{\mathrm{EM}}$, the weak force not intrinsically weak, just appears so due to mass of \boldsymbol{W}-boson

Beta Decay

- W boson is responsible for beta decay. Quark level
$\bullet \mathbf{u} \rightarrow \mathbf{d} \boldsymbol{e}^{+} \boldsymbol{v}_{e}$ or $\mathbf{d} \rightarrow \mathbf{u} \boldsymbol{e}^{-} \overline{\boldsymbol{v}_{e}}$ with coupling $g_{\boldsymbol{W}} \boldsymbol{V}_{\mathrm{ud}}$, $V_{u d}=0.974$
- not directly observable because no free quarks
$\mathcal{M}=\frac{V_{\mathrm{ud}} g_{W}^{2}}{8} \bar{u}(\mathrm{~d}) \gamma^{\nu}\left(1-\gamma^{5}\right) u(\mathrm{u}) \frac{g_{\mu \nu}}{q^{2}-m_{W}^{2}} \bar{v}\left(\bar{\nu}_{e}\right) \gamma^{\mu}\left(1-\gamma^{5}\right) u(e)$
Hadron level
- $\mathbf{n} \rightarrow \mathbf{p} \boldsymbol{e}^{-} \overline{\boldsymbol{v}_{e}}$ is allowed (free neutron lifetime $\boldsymbol{\tau}_{n}=\mathbf{8 8 6}$ s)
- $\mathbf{p} \rightarrow \mathbf{n} \boldsymbol{e}^{+} \boldsymbol{v}_{e}$ is forbidden $\boldsymbol{m}_{p}<\boldsymbol{m}_{\boldsymbol{n}}$ (free proton stable)
- Hadronic interactions (form factors) play a role in decay rate/lifetime Nuclear level
- $\beta+$ decay e.g. ${ }^{22} \mathrm{Na} \rightarrow{ }^{22} \mathrm{Ne}^{*} e^{-} \overline{\boldsymbol{v}_{e}}$
- $\boldsymbol{\beta}$ - decay e.g. ${ }^{60} \mathrm{Co} \rightarrow{ }^{60} \mathrm{Ni}^{*} e^{-} \overline{\boldsymbol{v}_{e}}$
- which type occurs depends on the energy available (Q)

Neutral Current Interactions

- Exchange of massive Z-bosons, $m_{Z}=91.1897(21) \mathrm{GeV}$
- Couples to all quarks and all leptons (including neutrinos)
- No allowed flavour changes!
- Coupling to Z-boson depends on the flavour of the fermion $(f): c_{V}, c_{A}$
- Both vector ($\left.c^{f_{V}} \gamma^{\mu}\right)$ and axial vector

	interaction vertex	
\boldsymbol{W}-boson	$\frac{g_{\mu \nu}}{q^{2}-m_{W}^{2}}$	$\frac{1}{2 \sqrt{2}} g_{W} \gamma^{\mu}\left(1-\gamma^{5}\right.$
\boldsymbol{Z}-boson	$\frac{g_{\mu \nu}}{q^{2}-m_{Z}^{2}}$	$\frac{1}{2} g_{Z} \gamma^{\mu}\left(c_{V}^{f}-c_{A}^{f} \gamma^{5}\right.$
photon, $\boldsymbol{\gamma}$	$\frac{g_{\mu \nu}}{q^{2}}$	$e \gamma^{\mu}$

Lepton	$\boldsymbol{c}_{\boldsymbol{V}}$	$\boldsymbol{c}_{\boldsymbol{A}}$	Quark	$\boldsymbol{c}_{\boldsymbol{V}}$	$\boldsymbol{c}_{\boldsymbol{A}}$
$\boldsymbol{v}_{\boldsymbol{e}}, \boldsymbol{v}_{\boldsymbol{\mu}}, \boldsymbol{v}_{\tau}$	$\mathbf{1} / 2$	$\mathbf{1} / 2$	$\mathbf{u}, \mathbf{c}, \mathbf{t}$	0.19	$1 / 2$
$\boldsymbol{e}, \boldsymbol{\mu}, \boldsymbol{\tau}$	-0.03	$-1 / 2$	$\mathbf{d}, \mathbf{s}, \mathbf{b}$	-0.34	$-1 / 2$

- g_{Z} coupling is related to $g_{W}: g_{Z}=g_{W} m_{Z} / m_{W}$
- Neutral weak current for electron: $\bar{u}(e) \gamma^{\mu}\left(c_{V}^{e}-c_{A}^{e} \gamma^{5}\right) u(e)$

Weak Neutral Current

- At low energy, the main effect of Z-boson exchange is neutrino scattering. (All other \boldsymbol{Z}-boson phenomena can also due to γ exchange.)
- Z-boson exchange first observed in the Gargamelle bubble chamber in 1973.
- Interaction of muon neutrinos produce a final state muon.

Symmetries in Particle Physics

- The EM, Weak and Strong forces all display a property known as Gauge Symmetry.
- In QM, a symmetry is present if physical observables (e.g. cross section, decay widths) are invariant under the following change in the wavefunction:

$$
\psi \rightarrow \psi^{\prime}=\hat{U} \psi
$$

- e.g. in electromagnetism, the physical observable fields \boldsymbol{E} and \boldsymbol{B} are independent of the value of the EM potential, \boldsymbol{A}_{μ} :

$$
A_{\mu} \rightarrow A_{\mu}^{\prime}=A_{\mu}-\partial_{\mu} \chi \quad A_{\mu}=(V, \vec{A}) \text { with } \vec{B}=\vec{\nabla} \times \vec{A}
$$

- The conditions on \boldsymbol{U} are that \boldsymbol{U} is unitary, and commutes with the Hamiltonian:

$$
\hat{U}^{\dagger} \hat{U}=1 \quad[\hat{U}, \hat{H}]=0
$$

- e.g. for EM, $\hat{U}=e^{i \phi}$ where ϕ is an arbitrary phase: $\psi \rightarrow \psi^{\prime}=e^{i \phi} \psi$

Symmetries in QED

- Instead of a global phase transformation $\boldsymbol{e}^{i \phi}$ imagine a local phase transformation, where the phase $\phi \sim q \chi$ is a function of $x^{\mu}: \chi\left(x^{\mu}\right)$.
$-q$ is a constant (will be electric charge)

$$
\psi \rightarrow \psi^{\prime}=\hat{U} \psi=e^{i q \chi\left(x^{\mu}\right)} \psi
$$

- Substitute into Dirac Equation $\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi=0$

$$
\begin{aligned}
\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi^{\prime} & =0 \\
\left(i \gamma^{\mu} \partial_{\mu}-m\right) e^{i q \chi(x)} \psi & =0 \\
i \gamma^{\mu}\left(e^{i q \chi(x)} \psi+i q \partial_{\mu} \chi-m\right) e^{i q \chi(x)} \psi & =0
\end{aligned}
$$

- An interaction term $-q \gamma^{\mu} \partial_{\mu} \chi \psi$ term appears in the Dirac Equation.
- To cancel this, modify the Dirac Equation for interacting fermions:

$$
\left(i \gamma^{\mu} \partial_{\mu}+i q A_{\mu}-m\right) \psi=0
$$

- With \boldsymbol{A}^{μ} transforming as:
- $\quad A_{\mu} \rightarrow A_{\mu}^{\prime}=A_{\mu}-\partial_{\mu} \chi \quad$ to cancel interaction term

Gauge Symmetry in QED

- Demanding that QED is invariant by a local phase shift:

$$
\psi \rightarrow \psi^{\prime}=\hat{U} \psi=e^{i q \chi\left(x^{\mu}\right)} \psi
$$

- Tells us that fermions interact with the photon field as:

$$
q \gamma^{\mu} A_{\mu} \psi
$$

- This local phase shift is know as a local $\mathrm{U}(1)$ gauge symmetry.
- Next lecture we will see a similar effect in QCD.

