Particle Physics

Dr Victoria Martin, Spring Semester 2013 Lecture 8: Calculating the Weak Force and

Symmetries

*Muon decay
*Beta decay
*Weak Neutral Current
*Neutrino scattering

*****Symmetries in PP

W and Z boson interactions

- Any fermion (quark, lepton) may emit or absorb a Z-boson.
 - That fermion will remain the same flavour.
 - Very similar to QED, but neutrinos can interact with a Z boson too.

- Any fermion (quark, lepton) may emit or absorb a *W*-boson.
 - To conserve electric charge that fermion must change flavour!
 - To conserve lepton number $e \leftrightarrow v_e$, $\mu \leftrightarrow v_\mu$, $\tau \leftrightarrow v_\tau$
 - → To conserve baryon number $(d, s, b) \leftrightarrow (u, c, t)$

• Key differences w.r.t QED.

 $\Rightarrow q^2 - m_W^2$ as denominator of propagator

- The $\frac{1}{2}(1-\gamma^5)$ term: this is observed experimentally.
- The overall factor of $1/\sqrt{8}$ is conventional
- Recall $P_L = (1 \gamma^5)/2$ is the Left Handed projection operator
 - W-boson interactions only act on left-handed chiral components of fermions
- For low energy interactions with $q \ll m_W$: effective propagator is $g_{\mu\nu}/m_W^2$

"Inverse Muon Decay"

- Start with a calculation of the process $v_{\mu} e^- \rightarrow \mu^- v_e$
- Not an easy process to measure experimentally, but easy to calculate!

$$\mathcal{M} = \frac{g_W^2}{8} \bar{u}(\nu_e) \gamma^{\mu} (1 - \gamma^5) u(e^-) \frac{g_{\mu\nu}}{q^2 - m_W^2} \bar{u}(\mu) \gamma^{\nu} (1 - \gamma^5) u(\nu_{\mu})$$
$$\mathcal{M}|^2 = \left(\frac{g_W^2}{8m_W^2}\right)^2 \left[\bar{u}(\nu_e) \gamma^{\mu} (1 - \gamma^5) u(e^-)\right]^2 \left[\bar{u}(\mu) \gamma^{\mu} (1 - \gamma^5) u(\nu_{\mu})\right]^2$$

- Usually we would average over initial spin and sum over final spin states:
 - However the neutrinos are only left handed
 - The equation can be solved as (see Griffiths section 9.1):

$$|\mathcal{M}|^{2} = 2\left(\frac{g_{W}^{2}}{m_{W}^{2}}\right)^{2} \left(p^{\mu}(e) \cdot p^{\mu}(\nu_{\mu})\right) \left(p^{\mu}(\mu) \cdot p^{\mu}(\nu_{e})\right)$$

• In the CM frame, where E is energy of initial electron or neutrino, and m_e neglected as $m_e \ll E$:

$$|\mathcal{M}|^{2} = 8E^{4} \left(\frac{g_{W}^{2}}{m_{W}^{2}}\right)^{2} \left(1 - \frac{m_{\mu}^{2}}{2E^{2}}\right)^{2}$$

Ve

"Inverse Muon Decay" Cross Section

• Cross section = $|\mathcal{M}|^2 \rho$, substituting for ρ (see problem sheet 1):

$$\frac{d\sigma}{d\Omega} = \left(\frac{1}{8\pi}\right)^2 \frac{S|\mathcal{M}|^2}{(E_1 + E_2)^2} \frac{|\vec{p}_f^*|}{|\vec{p}_i^*|}$$

- Substitute:
 - → centre of mass energy, $(E_1+E_2)^2=4E^2$
 - For elastic scattering particle $|p*_f| = |p*_i|$
 - \rightarrow S=1 as no identical particles in final state

$$\frac{d\sigma}{d\Omega} = \frac{E^2}{32\pi^2} \left(\frac{g_W^2}{m_W^2}\right)^2 \left(1 - \frac{m_\mu^2}{2E^2}\right)^2$$

- Fermi coupling constant $G_F = \sqrt{2g_W^2/8m_W^2}$
- Unlike electromagnetic interaction, no angular dependence
- → Integral over 4π solid angle

$$\sigma = \int \frac{d\sigma}{d\Omega} d\Omega = \frac{4}{\pi} E^2 G_F^2 \left(1 - \frac{m_\mu^2}{2E^2}\right)^2$$

Muon Decay

- Muon decay: $\mu^{-} \to e^{-} \overline{v_{e}} v_{\mu}$ (Griffiths 9.2): $|\mathcal{M}|^{2} = \left(\frac{g_{W}^{2}}{8m_{W}^{2}}\right)^{2} [\bar{u}(\nu_{\mu})\gamma^{\mu}(1-\gamma^{5})u(\mu)]^{2}[\bar{u}(e)\gamma^{\mu}(1-\gamma^{5})v(\bar{\nu}_{e})]^{2g} v_{\mu}$ $= 2\left(\frac{g_{W}^{2}}{m_{W}^{2}}\right)^{2} (p^{\mu}(e) \cdot p^{\mu}(\nu_{\mu})) (p^{\mu}(\mu) \cdot p^{\mu}(\nu_{e}))$
- The phase space, ρ , for a 1 \rightarrow 3 decay is, (Griffiths equation 6.21):

$$\frac{d\Gamma}{dE_e} = \frac{1}{4\pi^3} \left(\frac{\sqrt{2}g_W^2}{8M_W^2}\right)^2 m_{\mu}^2 E_e^2 \left(1 - \frac{4E_e}{3m_{\mu}^2}\right)$$

• Integrate over allowed values of E_e :

$$\Gamma = \int_0^{m_{\mu}/2} \frac{d\Gamma}{dE_e} dE_e = \frac{G_F^2 m_{\mu}^2}{4\pi^3} \int_0^{m_{\mu}/2} E_e^2 \left(1 - \frac{4E_e}{3m_{\mu}^2}\right) dE_e = \frac{G_F^2 m_{\mu}^5}{192\pi^3}$$

• Only muon decay mode for muons $BR(\mu^- \rightarrow e^- v_e v_\mu) \approx 100\%$, only one decay mode contributes to lifetime

$$\tau \equiv \frac{1}{\Gamma} = \frac{192\pi^3}{G_F^2 m_\mu^5} = \frac{192\pi^3\hbar^7}{G_F^2 m_\mu^5 c^4}$$

Muon Decay Measurements

• Measurements of muon lifetime and mass used to define a value for G_F (values from PDG 2010)

 $rac{}{}$ $\tau = (2.19703 \pm 0.00002) \times 10^{-6} s$

→ m = 105.658367 ± 0.000004 MeV

• Applying small corrections for finite electron mass and second order effects

 $rightarrow G_F = 1.166364(5) \times 10^{-5} \text{ GeV}^{-2}$

- Implies $g_W = 0.653$, $\alpha_W = g_W^2/4\pi = 1/29.5$
- $\alpha_W >> \alpha_{EM}$, the weak force not intrinsically weak, just appears so due to mass of *W*-boson

Beta Decay

n

u

d

d

• W boson is responsible for beta decay.

Quark level

- $\mathbf{u} \rightarrow \mathbf{d} \ e^+ v_e$ or $\mathbf{d} \rightarrow \mathbf{u} \ e^- \ \overline{v_e}$ with coupling $g_W V_{ud}$, $V_{ud} = 0.974$
- not directly observable because no free quarks

$$\mathcal{M} = \frac{V_{\rm ud} g_W^2}{8} \,\bar{u}(d) \gamma^{\nu} (1 - \gamma^5) u(u) \,\frac{g_{\mu\nu}}{q^2 - m_W^2} \,\bar{v}(\bar{\nu}_e) \gamma^{\mu} (1 - \gamma^5) u(e)$$

Hadron level

- $\mathbf{n} \rightarrow \mathbf{p} \ e^- \ \overline{v_e}$ is allowed (free neutron lifetime $\tau_n = 886$ s)
- $\mathbf{p} \rightarrow \mathbf{n} \ e^+ \ v_e$ is forbidden $m_p < m_n$ (free proton stable)
- Hadronic interactions (form factors) play a role in decay rate/lifetime Nuclear level
- β + decay e.g. ${}^{22}Na \rightarrow {}^{22}Ne^* e^- v_e$
- β -decay e.g. ${}^{60}\text{Co} \rightarrow {}^{60}\text{Ni}^* e^- \overline{v_e}$
- which type occurs depends on the energy available (Q)

p

d

 $\bar{\nu}_{e}$

W

Neutral Current $I_{n}^{\overline{u}(p)}$ $\varepsilon^{\mu(p)}$ ions

(P)

- Exchange of massive Z-bosons, $m_Z = 91.1897(21) \text{ GeV}$
- Couples to all quarks and all leptons (including neutrinos)
- No allowed flavour changes!
- Coupling to Z-boson depends on the flavour of the fermion $(f): c^{f}_{V}, c^{f}_{A}M$
- Both vector $(c^{f}_{V}\gamma^{\mu})$ and axial vector contributions $(c^{f}_{A}\gamma^{\mu}\gamma^{5})$.

$v(p)$ $ig_{\mu\nu}$							
$arepsilon^{\mu}(p)\ arepsilon^{\mu}(p)^{*}$	$\frac{-}{q^2}$ $\frac{i(\gamma^{\mu}q_{\mu}+m)}{propagator}$	interaction vertex					
$-\frac{ig_{\mu\nu}}{q^2}$	$\mu_{ie\gamma}\mu$ ν						
$-iM^{\mu}q_{\mu}+m$ W-boson	$\frac{g_{\mu u}}{q^2 - m_W^2}$	$\frac{1}{2\sqrt{2}}g_W\gamma^\mu(1-\gamma^5)$					
Z-bösön	$\frac{g_{\mu\nu}}{q^2 - m_Z^2}$	$\frac{1}{2}g_Z\gamma^\mu(c_V^f - c_A^f\gamma^5)$					
photon, γ	$rac{g_{\mu u}}{q^2}$	$e\gamma^{\mu}$					

Lepton	\mathcal{C}^{f}_{V}	c ^f A	Quark	$c^{f}V$	c ^f _A
νe, νμ, ντ	1/2	1/2	u, c, t	0.19	1/2
<i>e</i> , μ, τ	-0.03	-1/2	d, s, b	-0.34	$-\frac{1}{2}$

- g_Z coupling is related to g_W : $g_Z = g_W m_Z/m_W$
 - Neutral weak current for electron: $\bar{u}(e)\gamma^{\mu}(c_V^e c_A^e\gamma^5)u(e)$

Weak Neutral Curr

- At low energy, the main effect of Z-boson exchange is neutrino scattering. (All other Z-boson phenomena can also due to γ exchange.)
- Z-boson exchange first observed in the Gargamelle bubble chamber in 1973.
- Interaction of muon neutrinos produce a final state muon.

Symmetries in Particle Physics

- The EM, Weak and Strong forces all display a property known as Gauge Symmetry.
- In QM, a symmetry is present if **physical observables** (e.g. cross section, decay widths) are invariant under the following change in the wavefunction:

$$\psi \to \psi' = \hat{U}\psi$$

• e.g. in electromagnetism, the physical observable fields E and B are independent of the value of the EM potential, A_{μ} :

$$A_{\mu} \to A'_{\mu} = A_{\mu} - \partial_{\mu}\chi \qquad A_{\mu} = (V, \vec{A}) \text{ with } \vec{B} = \vec{\nabla} \times \vec{A}$$

• The conditions on U are that U is unitary, and commutes with the Hamiltonian:

$$\hat{U}^{\dagger}\hat{U} = \mathbf{1} \qquad \quad [\hat{U}, \hat{H}] = 0$$

• e.g. for EM, $\hat{U} = e^{i\phi}$ where ϕ is an arbitrary phase: $\psi \to \psi' = e^{i\phi}\psi$

Symmetries in QED

- Instead of a global phase transformation $e^{i\phi}$ imagine a local phase transformation, where the phase $\phi \sim q \chi$ is a function of x^{μ} : $\chi(x^{\mu})$.
 - q is a constant (will be electric charge)

$$\psi \to \psi' = \hat{U}\psi = e^{iq\chi(x^{\mu})}\psi$$

• Substitute into Dirac Equation $(i\gamma^{\mu}\partial_{\mu} - m)\psi = 0$ $(i\gamma^{\mu}\partial_{\mu} - m)\psi' = 0$ $(i\gamma^{\mu}\partial_{\mu} - m)e^{iq\chi(x)}\psi = 0$

$$i\gamma^{\mu}(e^{iq\chi(x)}\psi + iq\partial_{\mu}\chi - m)e^{iq\chi(x)}\psi = 0$$

- An interaction term $-q\gamma^{\mu}\partial_{\mu}\chi\psi$ term appears in the Dirac Equation.
- To cancel this, modify the Dirac Equation for interacting fermions:

$$i\gamma^{\mu}\partial_{\mu} + iqA_{\mu} - m)\psi = 0$$

• With A^µ transforming as:

$$A_{\mu}
ightarrow A_{\mu}^{\prime} = A_{\mu} - \partial_{\mu} \chi$$
 to cancel interaction term

Gauge Symmetry in QED

• Demanding that QED is invariant by a local phase shift:

$$\psi \to \psi' = \hat{U}\psi = e^{iq\chi(x^{\mu})}\psi$$

• Tells us that fermions interact with the photon field as:

 $q\gamma^{\mu}A_{\mu}\psi$

• This local phase shift is know as a local U(1) gauge symmetry.

• Next lecture we will see a similar effect in QCD.