Workshop Questions

7 Questions

7.1 The $\operatorname{sinc}()$ function

State the expression for $\operatorname{sinc}(x)$ in terms of $\sin (x)$, and prove that

$$
\operatorname{sinc}(0)=1
$$

Sketch the graph of

$$
y=\operatorname{sinc}(a x) \quad \text { and } \quad y=\operatorname{sinc}^{2}(a x)
$$

where a is a constant, and identify the locations of the zeros in each case.

7.2 Rectangular Aperture

Calculate the two dimensional Fourier transform of a rectangle of unit height and size a by b centered about the origin.
If $a=5 \mathrm{~mm}$ and $b=1 \mathrm{~mm}$ calculate the location of first zeros in the u and v direction. Sketch the real part of the Fourier transform. (Maple or gnuplot experts can make nice plots)

7.3 Gaussians

Calculate the Fourier Transform of a two-dimensional Gaussian given by,

$$
f(x, y)=\exp \left(-\frac{r^{2}}{r_{0}^{2}}\right)
$$

where $r^{2}=x^{2}+y^{2}$ and r_{0} is the radius of the e^{-1} point.
You may use the standard mathematical identity that

$$
\int_{-\infty}^{\infty} \exp \left(-b x^{2}\right) \exp (i a x) \mathrm{d} x=\sqrt{\frac{\pi}{b}} \exp \left(-\frac{a^{2}}{4 b}\right)
$$

7.4 Differentials

Show, for a two dimensional function $f(x, y)$, that,

$$
\mathcal{F}\left\{\frac{\partial f(x)}{\partial x}\right\}=\imath 2 \pi u F(u)
$$

and that

$$
\mathcal{F}\left\{\nabla^{2} f(x, y)\right\}=-(2 \pi w)^{2} F(u, v)
$$

where $w^{2}=u^{2}+v^{2}$.

7.5 Delta Functions

Use one of the analytic definitions of the δ-function to show that

$$
\mathcal{F}\{\delta(x)\}=1
$$

7.6 Sines and Cosines

Given the shifting property of the δ-function, begin:

$$
\int_{-\infty}^{\infty} f(x) \delta(x-a) \mathrm{d} x=f(a)
$$

then show that:

$$
\mathcal{F}\{\delta(x-a)\}=\exp (\imath 2 \pi a u)
$$

Use this, or otherwise, to calculate

$$
\mathcal{F}\{\cos (x)\} \quad \& \quad \mathcal{F}\{\sin (x)\}
$$

7.7 Comb Function

Calculate the Fourier Transform of a one-dimensional infinte row of delta functions each separated a.
Consider the 3-dimensional case, and compare your result the reciprocal lattice of a simple cubic structure. (this example assumes that you are taking Solid State Physics).

7.8 Convolution Theorm

Prove the Convolution Theorm that if

$$
g(x)=f(x) \odot h(x)
$$

then we have that

$$
G(u)=F(u) H(u)
$$

where $F(u)=\mathcal{F}\{f(x)\}$ etc.
The Convolution is frequently described as Fold-Shift-Multiply-Add. Explain this be means of sketch diagrams in one-dimension.

7.9 Correlation Theorm

Prove the Correlation Theorm that if

$$
c(x)=f(x) \otimes h(x)
$$

then

$$
C(u)=F(u) H^{*}(u)
$$

and also that

$$
h(x) \otimes f(x)=c^{*}(-x)
$$

Show how the Correlation of two images is sometimes called "template-matching".

7.10 Auto-Correlation

Calculate the Autocorrelation of a two-dimensional square of side a centred on the origin. Use Maple of gnuplot to produce a three-dimensional plot of this function.
Hence calculate the two dimensional Fourier transform of the function

$$
\begin{aligned}
h(x, y) & =\left(1-\frac{|x|}{a}\right)\left(1-\frac{|y|}{b}\right) \quad|x|<a \text { and }|y|<b \\
& =0 \text { else }
\end{aligned}
$$

