Workshop Questions

7 Questions

7.1 The $\operatorname{sinc}()$ function

State the expression for $\operatorname{sinc}(x)$ in terms of $\sin (x)$, and prove that

$$
\operatorname{sinc}(0)=1
$$

Sketch the graph of

$$
y=\operatorname{sinc}(a x) \quad \text { and } \quad y=\operatorname{sinc}^{2}(a x)
$$

where a is a constant, and identify the locations of the zeros in each case.

Solution

The definition of $\operatorname{sinc}(x)$ is

$$
\operatorname{sinc}(x)=\frac{\sin (x)}{x}
$$

To find the value as $x \rightarrow 0$ take the Taylor expansion about $x=0$ to get,

$$
\sin (x)=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\ldots
$$

so we have that

$$
\operatorname{sinc}(x)=1-\frac{x^{2}}{3!}+\frac{x^{4}}{5!}-\ldots
$$

so, when $x=0$ then $\operatorname{sinc}(0)=1$ as expected.
Sketch of $\operatorname{sinc}(a x)$ when $a=4$

and sketch of $\operatorname{sinc}^{2}(a x)$ when $a=4$

Both functions have zero in the same place, when $a x= \pm n \pi$, so at

$$
x_{n}= \pm \frac{n \pi}{a} \quad n=1,2, \ldots
$$

Note the larger a the closer the zero are together.

7.2 Rectangular Aperture

Calculate the two dimensional Fourier transform of a rectangle of unit height and size a by b centered about the origin.
If $a=5 \mathrm{~mm}$ and $b=1 \mathrm{~mm}$ calculate the location of first zeros in the u and v direction. Sketch the real part of the Fourier transform. (Maple or gnuplot experts can make nice plots)

Solution

We can express a rectangle of size $a \times b$ by:

$$
\begin{aligned}
f(x, y) & =1 \quad|x|<a / 2 \text { and }|y|<b / 2 \\
& =0 \quad \text { else }
\end{aligned}
$$

the Fourier Transform is given by:

$$
F(u, v)=\iint f(x, y) \exp (-l 2 \pi(u x+v y)) \mathrm{d} x \mathrm{~d} y
$$

which can then be written as:

$$
F(u, v)=\int_{-b / 2}^{b / 2}\left[\int_{-a / 2}^{a / 2} \exp (-l 2 \pi(u x+v y)) \mathrm{d} x\right] \mathrm{d} y
$$

Noting that the $\exp ()$ term is separable, this can be written as

$$
F(u, v)=\int_{-b / 2}^{b / 2} \exp (-l 2 \pi v y) \mathrm{d} y \int_{-a / 2}^{a / 2} \exp (-l 2 \pi u x) \mathrm{d} x
$$

Look at one of the integrals, and we get,

$$
\begin{aligned}
\int_{-a / 2}^{a / 2} \exp (-\imath 2 \pi u x) \mathrm{d} x & =\frac{1}{-\imath 2 \pi u}\left[\exp (-\imath 2 \pi u x]_{-a / 2}^{a / 2}\right. \\
& =\frac{-\imath}{2 \pi u}[\exp (\imath \pi a u)-\exp (-\imath \pi u a)] \\
& =\frac{\sin (\pi a u)}{\pi u} \\
& =a \operatorname{sinc}(\pi a u)
\end{aligned}
$$

The other integral is of exactly the same form, so that the Fourier transform of the rectangle is:

$$
F(u, v)=a b \operatorname{sinc}(\pi a u) \operatorname{sinc}(\pi b v)
$$

The zero of this function occur at:

$$
\begin{aligned}
& u_{n}= \pm \frac{n}{a} \quad \text { for } n=1,2,3, \ldots \\
& v_{m}= \pm \frac{m}{b} \quad \text { for } m=1,2,3, \ldots
\end{aligned}
$$

which if $a=5 \mathrm{~mm}$ and $b=1 \mathrm{~mm}$ then

$$
\begin{aligned}
u_{n} & =0.2 \mathrm{~mm}^{-1}, 0.4 \mathrm{~mm}^{-1}, 0.6 \mathrm{~mm}^{-1}, \ldots \\
v_{n} & =1 \mathrm{~mm}^{-1}, 2 \mathrm{~mm}^{-1}, 3 \mathrm{~mm}^{-1}, \ldots
\end{aligned}
$$

In diagrams we get,

so in Fourier space we get a three-Dimensional plot plot of

Note that the long/thin shape of the rectangle Fourier Transforms to tall/thin structures in the Fourier Transform.

7.3 Gaussians

Calculate the Fourier Transform of a two-dimensional Gaussian given by,

$$
f(x, y)=\exp \left(-\frac{r^{2}}{r_{0}^{2}}\right)
$$

where $r^{2}=x^{2}+y^{2}$ and r_{0} is the radius of the e^{-1} point.
You may use the standard mathematical identity that

$$
\int_{-\infty}^{\infty} \exp \left(-b x^{2}\right) \exp (i a x) \mathrm{d} x=\sqrt{\frac{\pi}{b}} \exp \left(-\frac{a^{2}}{4 b}\right)
$$

Solution

The Fourier Transform is given by:

$$
F(u, v)=\iint \exp \left(-\frac{\left(x^{2}+y^{2}\right)}{r_{0}^{2}}\right) \exp (-\imath 2 \pi(u x+v y)) \mathrm{d} x \mathrm{~d} y
$$

Since the Gaussian and the Fourier kernel are separable, this can be written as

$$
F(u, v)=\int \exp \left(-\frac{x^{2}}{r_{0}^{2}}\right) \exp (-\imath 2 \pi u x) \mathrm{d} x \int \exp \left(-\frac{y^{2}}{r_{0}^{2}}\right) \exp (-\imath 2 \pi v y) \mathrm{d} y
$$

so we need only evaluate one integral.
Noting the result given that

$$
\int_{-\infty}^{\infty} \exp \left(-b x^{2}\right) \exp (\text { iax }) \mathrm{d} x=\sqrt{\frac{\pi}{b}} \exp \left(-\frac{a^{2}}{4 b}\right)
$$

See "Mathematical Handbook", M.R. Spiegel, McGraw-Hill, Page 98, Definite Integral 15.73. The given identity is actually,

$$
\int_{0}^{\infty} \exp \left(-b x^{2}\right) \cos (a x) \mathrm{d} x=\frac{1}{2} \sqrt{\frac{\pi}{b}} \exp \left(-\frac{a^{2}}{4 b}\right)
$$

but this can be extended to the $\infty \rightarrow \infty \exp ()$ integral required by noting that the $\cos ()$ is symmetric so $-\infty \rightarrow \infty$ integral is double the $0 \rightarrow \infty$ integral and that $\sin ()$ is anti-symmetric so the imaginary part of the integral from $\infty \rightarrow \infty$ is zero.
Then if be let $b=1 / r_{0}^{2}$ and $a=2 \pi u$, then

$$
\int \exp \left(-\frac{x^{2}}{r_{0}^{2}}\right) \exp (-l 2 \pi u x) \mathrm{d} x=\frac{\sqrt{\pi}}{r_{0}} \exp \left(-\pi^{2} r_{0}^{2} u^{2}\right)
$$

which is also a Gaussian.
Key Result: The Fourier Transform of a Gaussian is a Gaussian. It is the only function that is its own Fourier Transform.
Exactly the same expression for the y integral, so we get that

$$
F(u, v)=\frac{\pi}{r_{0}^{2}} \exp \left(-\pi^{2} r_{0}^{2}\left(u^{2}+v^{2}\right)\right)
$$

which is more conveniently written as:

$$
F(u, v)=\frac{\pi}{r_{0}^{2}} \exp \left(-\frac{w^{2}}{w_{0}^{2}}\right)
$$

where $w^{2}=u^{2}+v^{2}$ and $w_{0}=1 / \pi r_{0}$, which is a circular Gaussian radius with e^{-1} point at w_{0}. So the Fourier Transform of a Gaussian is a Gaussian of reciprocal width. Or more simply, as a wide Gaussian Fourier Transform for give a narrow Gaussian and vice versa.
General shape of two dimensional Gaussian with $r_{0}=3$ is given by

7.4 Differentials

Show, for a two dimensional function $f(x, y)$, that,

$$
\mathcal{F}\left\{\frac{\partial f(x)}{\partial x}\right\}=\imath 2 \pi u F(u)
$$

and that

$$
\mathcal{F}\left\{\nabla^{2} f(x, y)\right\}=-(2 \pi w)^{2} F(u, v)
$$

where $w^{2}=u^{2}+v^{2}$.

Solution

If $F(u)$ is the Fourier Transform of $f(x)$ then

$$
f(x)=\mathcal{F}^{-1}\{F(u)\}
$$

which we can write out as:

$$
f(x)=\int F(u) \exp (\imath 2 \pi u x) \mathrm{d} u
$$

take differential of both sides,

$$
\frac{\mathrm{d} f(x)}{\mathrm{d} x}=\int \imath 2 \pi u F(u) \exp (\imath 2 \pi u x) \mathrm{d} u
$$

showing that the left side is

$$
\mathcal{F}^{-1}\{\imath 2 \pi u F(u)\}
$$

take the forward Fourier transform of each side to give:

$$
\mathcal{F}\left\{\frac{\mathrm{d} f(x)}{\mathrm{d} x}\right\}=\imath 2 \pi u F(u)
$$

as required.
In two dimensions we have the a similar result that:

$$
\mathcal{F}\left\{\frac{\partial f(x, y)}{\partial x}\right\}=\imath 2 \pi u F(u, v)
$$

and that:

$$
\mathcal{F}\left\{\frac{\partial f(x, y)}{\partial y}\right\}=\imath 2 \pi v F(u, v)
$$

the second order differentials are thus:

$$
\mathcal{F}\left\{\frac{\partial^{2} f(x, y)}{\partial x^{2}}\right\}=-(2 \pi u)^{2} F(u, v)
$$

and that:

$$
\mathcal{F}\left\{\frac{\partial^{2} f(x, y)}{\partial y^{2}}\right\}=-(2 \pi v)^{2} F(u, v)
$$

The Laplacian,

$$
\nabla^{2} f(x, y)=\frac{\partial^{2} f(x, y)}{\partial x^{2}}+\frac{\partial^{2} f(x, y)}{\partial y^{2}}
$$

so noting that the Fourier Transform is a linear relation, we get that

$$
\mathcal{F}\left\{\nabla^{2} f(x, y)\right\}=-(2 \pi)^{2}\left(u^{2}+v^{2}\right) F(u, v)=-(2 \pi w)^{2} F(u, v)
$$

as required.
The result that taking the Laplacian in real space is equivalent to multiplying by a parabolic term in Fourier space is used in image processing to detect edges.

7.5 Delta Functions

Use one of the analytic definitions of the δ-function to show that

$$
\mathcal{F}\{\boldsymbol{\delta}(x)\}=1
$$

Solution

Take the Top-Hat definition of the δ-function, with

$$
\Delta_{\varepsilon}(x)=\frac{1}{\varepsilon} \Pi\left(\frac{x}{\varepsilon}\right)
$$

The Gaussian definition is similar, but the sinc() definition is a bit more difficult since it Fourier Transform to give a $\Pi()$ which is not actually analytic.
The Fourier Transform is given by:

$$
\mathcal{F}\left\{\Delta_{\varepsilon}(x)\right\}=\frac{1}{\varepsilon} \int_{-\varepsilon / 2}^{\varepsilon / 2} \exp (-\imath 2 \pi u x) \mathrm{d} x
$$

which we can integrate to give

$$
\frac{1}{\varepsilon} \frac{l}{2 \pi u}\left[\exp (-\imath 2 \pi u x]_{-\varepsilon / 2}^{\varepsilon / 2}\right.
$$

which gives

$$
\frac{1}{\varepsilon} \frac{l}{2 \pi u}[\exp (-\imath \pi \varepsilon u)-\exp (\imath \pi \varepsilon u)]
$$

which we can then write as:

$$
\frac{1}{\varepsilon} \frac{l}{2 \pi u}-2 \iota \sin (\pi \varepsilon u)
$$

which is then just

$$
\frac{\sin (\pi \varepsilon u)}{\pi \varepsilon u}=\operatorname{sinc}(\pi \varepsilon u)
$$

now we have from question 1 , we that $\operatorname{sinc}(0)=1$, so we have that

$$
\lim _{\varepsilon \rightarrow 0} \mathcal{F}\left\{\Delta_{\varepsilon}(x)\right\}=1
$$

as expected.

7.6 Sines and Cosines

Given the shifting property of the δ-function, begin:

$$
\int_{-\infty}^{\infty} f(x) \delta(x-a) \mathrm{d} x=f(a)
$$

then show that:

$$
\mathcal{F}\{\delta(x-a)\}=\exp (\imath 2 \pi a u)
$$

Use this, or otherwise, to calculate

$$
\mathcal{F}\{\cos (x)\} \quad \& \quad \mathcal{F}\{\sin (x)\}
$$

Solution

We can write,

$$
\mathcal{F}\{\delta(x-a)\}=\int \delta(x-a) \exp (-\imath 2 \pi u x) \mathrm{d} x
$$

then the shifting property gives that this is just the value of $\exp ()$ as $x=a$, so that

$$
\mathcal{F}\{\delta(x-a)\}=\exp (-\imath 2 \pi a u)
$$

take the inverse Fourier Transform of both sides gives,

$$
\mathcal{F}^{-1}\{\exp (-l 2 \pi a u)\}=\delta(x-a)
$$

noting that the difference between a forward and inverse Fourier Transform is just a - sign, then,

$$
\mathcal{F}\{\exp (\imath 2 \pi a u)\}=\delta(x-a)
$$

let $a=1 / 2 \pi$ and interchange x and u to give,

$$
\mathcal{F}\{\exp (\imath x)\}=\delta\left(u-\frac{1}{2 \pi}\right)
$$

Now, noting that the Fourier Transform is linear, then:

$$
\mathcal{F}\{\cos (x)\}=\frac{1}{2}[\mathcal{F}\{\exp (\imath x)\}+\mathcal{F}\{\exp (-l x)\}]=\frac{1}{2}\left[\delta\left(u-\frac{1}{2 \pi}\right)+\delta\left(u+\frac{1}{2 \pi}\right)\right]
$$

and similarly,

$$
\mathcal{F}\{\sin (x)\}=\frac{1}{2 l}[\mathcal{F}\{\exp (\imath x)\}-\mathcal{F}\{\exp (-l x)\}]=\frac{1}{2 l}\left[\delta\left(u-\frac{1}{2 \pi}\right)-\delta\left(u+\frac{1}{2 \pi}\right)\right]
$$

so $\cos ()$ and $\sin ()$ Fourier transform to give a single frequency, as expected.

7.7 Comb Function

Calculate the Fourier Transform of a one-dimensional infinte row of delta functions each separated a.
Consider the 3-dimensional case, and compare your result the reciprocal lattice of a simple cubic structure. (this example assumes that you are taking Solid State Physics).

Solution

An infinite row of δ-functions separated by a,

This is known as a δ-Comb, which can be written as

$$
\operatorname{Comb}(x)=\sum_{j=-\infty}^{\infty} \delta(x-j a)
$$

Note that the Fourier Transform of one δ-function is

$$
\mathcal{F}\{\delta(x-a)\}=\exp (-\imath 2 \pi a u)
$$

so noting that the Fourier Transform is linear, then the FT of the Comb function is

$$
F(u)=\sum_{j=-\infty}^{\infty} \exp (-\imath 2 \pi j a u)
$$

Now we have that,

$$
\exp (-\imath 2 \pi j a u)=1 \quad \text { if } 2 \pi a u=2 n \pi
$$

so that then

$$
u=\frac{n}{a} \Rightarrow \exp (-\imath 2 \pi j a u)=1 \quad \forall j
$$

to the Fourier Transform

$$
\begin{aligned}
F(u) & \rightarrow \infty \quad \text { when } u=n / a \text { (In Phase) } \\
& \rightarrow 0 \quad \text { when } u \neq n / a \text { (Out of Phase) }
\end{aligned}
$$

so $F(u)$ is also a δ-Comb with spacing $1 / a$, which can be written as

$$
F(u)=\sum_{j=-\infty}^{\infty} \delta\left(u-\frac{j}{a}\right)
$$

Note the reciprocal relation between real and Fourier Space.
In the case of a three-dimensional lattice the atomic locations are given by three-dimensional δ function (points in three-dimensional space). So a simple cubic lattice is just a three-dimensional δ-Comb. The Fourier transform is separable so we can take the Fourier Transform in each dimension separately. Each transform takes a δ-Comb in real space to a reciprocally spaced δ-Comb is Fourier space, so that the Fourier Transform of a simple cubic lattice is a simple cubic structure in Fourier space.

Real Space

Fourier Space

In solid state physics, the Reciprocal Lattice is a Three-Dimensional Fourier Transform of the real space lattice.
All the other lattice structures can be Fourier transformed by considering breaking the structure down into δ-Combs, for example the Fourier transforms of fcc is bcc etc.

7.8 Convolution Theorm

Prove the Convolution Theorm that if

$$
g(x)=f(x) \odot h(x)
$$

then we have that

$$
G(u)=F(u) H(u)
$$

where $F(u)=\mathcal{F}\{f(x)\}$ etc.
The Convolution is frequently described as Fold-Shift-Multiply-Add. Explain this be means of sketch diagrams in one-dimension.

Solution

Convolution is defined as

$$
g(x)=f(x) \odot h(x)=\int_{-\infty}^{\infty} f(s) h(x-s) \mathrm{d} s
$$

Now take the Fourier Transform of both sides, to get

$$
\int g(x) \exp (-\imath 2 \pi u x) \mathrm{d} x=\int\left[\int_{-\infty}^{\infty} f(s) h(x-s) \mathrm{d} s\right] \exp (-\imath 2 \pi u x) \mathrm{d} x
$$

The Fourier Transform is linear, so the order of integration does not matter, so we get

$$
G(u)=\iint f(s) h(x-s) \exp (-\imath 2 \pi u x) \mathrm{d} s \mathrm{~d} x
$$

Now let $t=x-s$ so we get

$$
\begin{aligned}
G(u) & =\iint f(s) h(t) \exp (-\imath 2 \pi u(s+t)) \mathrm{d} s \mathrm{~d} t \\
& =\int f(s) \exp (-\imath 2 \pi u s) \mathrm{d} s \int h(t) \exp (-\imath 2 \pi u t) \mathrm{d} t \\
& =F(u) H(u)
\end{aligned}
$$

where $F(u)=\mathcal{F}\{f(x)\}, H(u)=\mathcal{F}\{h(x)\}$ and $G(u)=\mathcal{F}\{g(x)\}$.
Convolution can be described as:

1. Fold and Shift $h(x-s)$ can be interperated at taking function $h(s)$, "Folding" to get $h(-s)$ and "Shifting" by distance x to get $h(x-s)$.
2. Multiply the folded and shifted function $h(x-s)$ is \times by $f(s)$
3. Add up the area of overlap, (or more formally integrate).

This can be consider diagrammatically as:

7.9 Correlation Theorm

Prove the Correlation Theorm that if

$$
c(x)=f(x) \otimes h(x)
$$

then

$$
C(u)=F(u) H^{*}(u)
$$

and also that

$$
h(x) \otimes f(x)=c^{*}(-x)
$$

Show how the Correlation of two images is sometimes called "template-matching".

Solution

Correlation is defined as

$$
c(x)=f(x) \otimes h(x)=\int_{-\infty}^{\infty} f(s) h^{*}(s-x) \mathrm{d} s
$$

Now take the Fourier Transform of both sides, to get

$$
\int c(x) \exp (-l 2 \pi u x) \mathrm{d} x=\int\left[\int_{-\infty}^{\infty} f(s) h^{*}(s-x) \mathrm{d} s\right] \exp (-\imath 2 \pi u x) \mathrm{d} x
$$

The Fourier Transform is linear, so the order of integration does not matter, so we get

$$
C(u)=\iint f(s) h^{*}(s-x) \exp (-\imath 2 \pi u x) \mathrm{d} s \mathrm{~d} x
$$

Now let $t=s-x$ so we get

$$
C(u)=\iint f(s) h^{*}(t) \exp (-\imath 2 \pi u(s-t)) \mathrm{d} s \mathrm{~d} t
$$

$$
\begin{aligned}
& =\int f(s) \exp (-\imath 2 \pi u s) \mathrm{d} s \int h(t)^{*} \exp (\imath 2 \pi u t) \mathrm{d} t \\
& =\int f(s) \exp (-\imath 2 \pi u s) \mathrm{d} s\left[\int h(t) \exp (-\imath 2 \pi u t) \mathrm{d} t\right]^{*} \\
& =F(u) H^{*}(u)
\end{aligned}
$$

where $F(u)=\mathcal{F}\{f(x)\}, H(u)=\mathcal{F}\{h(x)\}$ and $C(u)=\mathcal{F}\{c(x)\}$.
Correlation is very similar to convolution except the second function is not folded and the direction of the shift is reversed. We have that,

$$
c(x)=\int_{-\infty}^{\infty} f(s) h^{*}(s-x) \mathrm{d} s
$$

so taking the complex conjugate, we have that

$$
c^{*}(x)=\int_{-\infty}^{\infty} f^{*}(s) h(s-x) \mathrm{d} s
$$

Now let $t=s-x$, so we

$$
c^{*}(x)=\int_{-\infty}^{\infty} f^{*}(t+x) h(t) \mathrm{d} t
$$

then letting $y=-x$, we get

$$
c^{*}(-y)=\int_{-\infty}^{\infty} h(t) f^{*}(t-y) \mathrm{d} t
$$

so that we have that

$$
h(x) \otimes f(x)=c^{*}(-x)
$$

In most cases the functions $f(x)$ and $h(x)$ will be real, so the complex conjugation does not matter, but the reversal does.
Take a input scene $f(x, y)$ and a target function $h(x, y)$, then the correlation is formed by taking a shifted version of $h(x, y)$, the target, and placing over the input scene $f(x, y)$.

When man is located over house there is a poor match, so that multiplying and summing the overlap will give a an indistinct blob.

When man is located over man there is a good match so that multiplying and summing will give a sharp peak. This height of the peak will give the degree at match between the target and the input scene and the location of the peak will give the location of the target. The correlation is thus the degree of match between the target and the input scene, and hence template-matching.

7.10 Auto-Correlation

Calculate the Autocorrelation of a two-dimensional square of side a centred on the origin. Use Maple of gnuplot to produce a three-dimensional plot of this function.
Hence calculate the two dimensional Fourier transform of the function

$$
\begin{aligned}
h(x, y) & =\left(1-\frac{|x|}{a}\right)\left(1-\frac{|y|}{b}\right) \quad|x|<a \text { and }|y|<b \\
& =0 \text { else }
\end{aligned}
$$

Solution

Take a square of size $a \times a$ centred about the origin we have

The autocorrelation is given, mathematically, by

$$
a(x, y)=\iint f(s, t) f^{*}(s-x, t-y) \mathrm{d} s \mathrm{~d} t
$$

in this case $f(x, y)$ is real.
Physically this means:

1. Shift $f(s, t)$ by amount (x, y).
2. Multiply with the unshifted version.
3. Integrate over the area of overlap.

So if we shift by (x, y) we get

so the Area of Overlap is

$$
a(x, y)=(a-|x|)(a-|y|)=a^{2}\left(1-\frac{|x|}{a}\right)\left(1-\frac{|y|}{a}\right)
$$

This is a square pyramid with base $2 a \times 2 a$

Note that the autocorrelation is twice the size of of the original square.
The function $h(x, y)$ is the Normalised Autocorrelation, so that

$$
h(x, y)=\frac{a(x, y)}{a^{2}}
$$

The Fourier Transform of $h(x, y)$ is

$$
H(u, v)=\mathcal{F}\{h(x, y)\}=\frac{1}{a^{2}} \mathcal{F}\{a(x, y)\}=\frac{1}{a^{2}} A(u, v)
$$

The autocorrelation theorem gives at

$$
\begin{aligned}
a(x, y) & =f(x, y) \otimes f(x, y) \\
A(u, v) & =|F(u, v)|^{2}
\end{aligned}
$$

Now $f(x, y)$ is a square of size $a \times a$, so from Question 2 we have that.

$$
F(u, v)=a^{2} \operatorname{sinc}(\pi a u) \operatorname{sinc}(\pi a v)
$$

So we have that

$$
A(u, v)=a^{4} \operatorname{sinc}^{2}(\pi a u) \operatorname{sinc}^{2}(\pi a v)
$$

and so the required Fourier Transform

$$
H(u, v)=a^{2} \operatorname{sinc}^{2}(\pi a u) \operatorname{sinc}^{2}(\pi a v)
$$

This is much easier than trying to form the direct Fourier Transform.

