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Fourier Theory

Aim: The lecture covers the Fourier Theory as detailed in FOURIER TRANSFORM, (WHAT YOU

NEED TO KNOW).

Contents:

1. Introduction and Notation

2. The Fourier Transform and its Properties

3. The Dirac Delta Function

4. Symmetry Conditions of Fourier Transforms

5. Convolution and Correlation

6. Summary
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Notation

The notation maintained throughout will be:

x,y → Real Space co-ordinates
u,v → Frequency Space co-ordinates

and lower case functions f (x), being a real space function and upper case functions (eg F(u)),
being the corresponding Fourier transform, thus:

F(u) = F { f (x)}
f (x) = F −1{F(u)}

where F {} is the Fourier Transform operator.

The character ı will be used to denote
√
−1.
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Special Functions

Two special functions,

The sinc() Function:

sinc(x) =
sin(x)

x
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Special Functions

The Top-Hat Function:

Π(x) = 1 for |x| ≤ 1/2
= 0 else

begin of unit height and width centered about x = 0,
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The Fourier Transform

For dimensional continuous function, f (x)

F(u) =
Z ∞

−∞
f (x)exp(−ı2πux)dx

with inverse Fourier transform by;

f (x) =
Z ∞

−∞
F(u)exp(ı2πux)du

If f (x) is a real signal

F(u) = Fr(u)+ ıFı(u)

where we have,

Fr(u) =
Z ∞

−∞
f (x)cos(2πux)dx

Fı(u) = −
Z ∞

−∞
f (x)sin(2πux)dx

Desomposition of f (x) into cos() and sin() terms.

The u variable is interpreted as a frequency, so. f (x) is a sound signal x in seconds.

F(u) is its frequency spectrum with u measured in Hertz (s−1).
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Properties of the Fourier Transform

The Fourier transform has a range of useful properties, some of which are listed below.

Linearity: The Fourier transform is a linear operation, so.

F {a f (x)+bg(x)} = aF(u)+bG(u)

Central when describing linear systems.

Complex Conjugate: The Fourier transform Complex Conjugate of a function is given by

F { f ∗(x)} = F∗(−u)

where F(u) is the Fourier transform of f (x).

Forward and Inverse: We have that

F {F(u)} = f (−x)

apply Fourier transform twice, get a spatial reversal.

Similarly with inverse Fourier transform

F −1{ f (x)} = F(−u)

so that the Fourier and inverse Fourier transforms differ only by a sign.
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Properties of the Fourier Transform I

Differentials: The Fourier transform of the derivative is

F
{

d f (x)
dx

}

= ı2πuF(u)

and the second derivative is given by

F
{

d2 f (x)
dx2

}

= −(2πu)2F(u)

Used frequently in signal and image processing.

Power Spectrum: The Power Spectrum is modulus square of the Fourier transform

P(u) = |F(u)|2

. This can be interpreted as the power of the frequency components.

Any function and its Fourier transform obey the condition that
Z ∞

−∞
| f (x)|2 dx =

Z ∞

−∞
|F(u)|2 du

which is frequently known as Parseval’s Theorem.

Power in real and Fourier space in the same.
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Two Dimensional Fourier Transform

Two dimensional Fourier transform of a function f (x,y) by,

F(u,v) =
Z Z

f (x,y)exp(−ı2π(ux+ vy)) dxdy

with the inverse Fourier transform defined by;

f (x,y) =
Z Z

F(u,v)exp(ı2π(ux+ vy)) dudv

Real function f (x,y), the Fourier transform can be considered as the decomposition of a function
into its sinusoidal components.

Note: x,y usually have dimensions of length.

Fourier space variables u,v dimensions of inverse length, called Spatial Frequency.

Clearly the derivatives then become

F
{

∂ f (x,y)
∂x

}

= ı2πuF(u,v) and F
{

∂ f (x,y)
∂y

}

= ı2πvF(u,v)

yielding the important result that,

F {∇2 f (x,y)
}

= −(2πw)2F(u,v) where w2 = u2 + v2

A
PP

LIED OPTICS GROU
P

D
E

PA

RTMENT of PHYSI
C

S Fourier Transforms -8- Semester 2



Fourier Theory for Optics T
H

E

U N I V E R
S

I T
Y

O
F

E
D I N B U

R
G

H

Two Dimensional Fourier transform II

Two dimensional Fourier Transform of a function is a separable operation.

F(u,v) =
Z

P(u,y)exp(−ı2πvy)dy

where

P(u,y) =
Z

f (x,y)exp(−ı2πux)dx

where P(u,y) is the Fourier Transform of f (x,y) with respect to x only.

Special case when f (x,y) also seperable, so that

f (x,y) = fa(x) fb(y)

then we have that

F(u,v) = Fa(u)Fb(v)

where

Fa(u) = F { fa(x)} and Fb(v) = F { fb(y)}
vastly simplifying the calculation.
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The Three-Dimensional Fourier Transform

Three dimensional case we have a function f (~r) where ~r = (x,y,z), then the three-dimensional
Fourier Transform

F(~s) =
Z Z Z

f (~r)exp(−ı2π~r.~s) d~r

where~s = (u,v,w) being the three reciprocal variables each with units length−1.

Similarly the inverse Fourier Transform is given by

f (~r) =
Z Z Z

F(~s)exp(ı2π~r.~s) d~s

Used extensively in solid state physics where the three-dimensional Fourier Transform of a crystal
structures is usually called Reciprocal Space.
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Dirac Delta Function

Dirac Delta Function, which is somewhat abstractly defined as:

δ(x) = 0 for x 6= 0
Z ∞

−∞
δ(x)dx = 1

“tall-and-thin” spike with unit area located at the origin,

−3 −2 0−1 1 2 3

xδ(    )

not an “infinitely high” since it scales,
Z ∞

−∞
aδ(x)dx = a

where a is a constant.
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Dirac Delta Function II

There are a range of definitions in terms of proper function, are:

∆ε(x) =
1

ε
√

π
exp(

−x2

ε2 )

∆ε(x) =
1
ε

Π

(

x− 1
2ε

ε

)

∆ε(x) =
1
ε

sinc
(x

ε

)

all have the property that,
Z ∞

−∞
∆ε(x)dx = 1 ∀ε

and we may form the approximation that,

δ(x) = lim
ε→0

∆ε(x)

which can be interpreted as making any of the above approximations ∆ε(x) a very “tall-and-thin”
spike with unit area.
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Dirac Delta Function III

In the field of optics and imaging useful to define Two Dimensional Dirac Delta Function

δ(x,y) = 0 for x 6= 0 & y 6= 0
Z Z

δ(x,y)dxdy = 1

which is the two dimensional version of the δ(x) function defined above, and in particular:

δ(x,y) = δ(x)δ(y).

Can be considered as a single bright spot in the centre of the field of view, for example a single
bright star viewed by a telescope.
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Properties of the Dirac Delta Function
For a function f (x) we have that

Z ∞

−∞
δ(x) f (x)dx = f (0)

which is often taken as an alternative definition of the Delta function. Extended to the Shifting
Property of

Z ∞

−∞
δ(x−a) f (x)dx = f (a)

where δ(x−a) is just a δ-function located at x = a

f(x)
f(a)

xa0

In two dimensions, for a function f (x,y), we have that,
Z Z

δ(x−a,y−b) f (x,y)dxdy = f (a,b)

where δ(x−a,y−b) is a δ-function located at position a,b.
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Properties of the Delta Function I

The Fourier transform by integration of the definition,

F {δ(x)} =
Z ∞

−∞
δ(x)exp(−ı2πux)dx = exp(0) = 1

and then by the Shifting Theorem we get that,

F {δ(x−a)} = exp(ı2πau)

typically called a phase ramp.

Noted that the modulus squared is

|F {δ(x−a)}|2 = |exp(−ı2πau)|2 = 1
the power spectrum a Delta Function is a constant independent of its location.
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Properties of the Delta Function II

Two Delta Function located at ±a, then

F {δ(x−a)+δ(x+a)}= exp(ı2πau)+ exp(−ı2πau) = 2cos(2πau)

while if we have the Delta Function at x = −a as negative,

F {δ(x−a)−δ(x+a)}= exp(ı2πau)− exp(−ı2πau) = 2ısin(2πau)

So we get the two useful results that

F {cos(2πax)} =
1
2

[δ(u+a)+δ(u−a)]

and that

F {sin(2πax)} =
1
2ı

[δ(u+a)−δ(u−a)]

So that the Fourier transform of a cosine or sine function consists of a single frequency.
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The Infinite Comb

Series of Delta functions at a regular spacing of ∆x,, giving

Comb∆x(x) =
∞

∑
i=−∞

δ(x− i∆x).

x 2   x 3   x 4   x−   x−2   x−3   x−4   x ∆∆∆∆∆ ∆∆∆

x∆

x0

Fourier transform is sum of the Fourier transforms of shifted Delta functions,

F {Comb∆x(x)} =
∞

∑
i=−∞

exp(−ı2πi∆xu)
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The Infinite Comb I

Now the exponential term,

exp(−ı2πi∆xu) = 1 when 2π∆xu = 2πn

so that:
∞

∑
i=−∞

exp(−ı2πi∆xu) → ∞ when u = n
∆x

= 0 else

which is an infinite series of δ-function at a separation of ∆u = 1
∆x.
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The Infinite Comb II

So that an Infinite Comb Fourier transforms to another Infinite Comb

F {Comb∆x(x)} = Comb∆u(u) with ∆u = 1
∆x

∆ ∆ ∆ ∆

∆

0 u−2/   x −1/   x 1/   x 2/   x

1/   x
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Symmetry Conditions

For a real function has a complex Fourier Transform.

This Fourier Transform has special symmetry properties that are essential when calculating and/or
manipulating Fourier Transforms.

One-Dimensional Symmetry: Since f (x) is real then,

F(u) = Fr(u)+ ıFı(u)

where we have

Fr(u) =
Z

f (x) cos(2πux)dx

Fı(u) = −
Z

f (x) sin(2πux)dx
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Symmetry Conditions I
now cos() is a symmetric function and sin() is an anti-symmetric
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Fr(u) is Symmetric and Fı(u) is Anti-symmetric

which can be written out explicitly as,

Fr(u) = Fr(−u) and Fı(u) = −Fı(−u)

The power spectrum is given by

|F(u)|2 = Fr(u)2 +Fı(u)2

then clearly the power spectrum is also symmetric with

|F(u)|2 = |F(−u)|2

so when the power spectrum of a signal is calculated it is normal to display the signal from 0→ umax
and ignore the negative components.
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Symmetry Conditions III

Two-Dimensional Symmetry real fucntion f (x,y), then

F(u,v) = Fr(u,v)+ ıFı(u,v)

expand exp() functions into cos() and sin() we get that

Fr(u,v) =
Z Z

f (x,y) [cos(2πux)cos(2πvy)− sin(2πux)sin(2πvy)] dxdy

Fı(u,v) =
Z Z

f (x,y) [cos(2πux)sin(2πvy)+ sin(2πux)cos(2πvy)] dxdy

real part is symmetric and the imaginary part is anti-symmetric,

Fr(u,v) = Fr(−u,−v)
Fr(−u,v) = Fr(u,−v)

for the real part of the Fourier transform, and

Fı(u,v) = −Fı(−u,−v)
Fı(−u,v) = −Fı(u,−v)

for the imaginary part.
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Symmetry Conditions IV

The power spectrum is also symmetric, with

|F(u,v)|2 = |F(−u,−v)|2
|F(−u,v)|2 = |F(u,−v)|2

(−u,v) (0,v) (u,v)

(u,0)

(u,−v)(0,−v)(−u,−v)

(−u,0)
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Convolution of Two Functions

Convolution is central to Fourier theory.

Convolution between two functions, f (x) and h(x) is defined as:

g(x) = f (x)�h(x) =
Z ∞

−∞
f (s)h(x− s)ds

where s is a dummy variable of integration.
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Convolution of Two Functions I

Area of overlap between the function f (x) and the spatially reversed version of the function h(x).

x

s

h(s)

h(x−s)

f(s)

f(s) h(x−s)h(x−s) f(s)

0<x<1
0 s

−1<x<0
0 s

−1 1 s0 −1 0 1 s

x

−2 0 2

g(x)
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Convolution of Two Functions II

The Convolution Theorem is

G(u) = F(u)H(u)

where

G(u) = F {g(x)}
F(u) = F { f (x)}
H(u) = F {h(x)}

This is the most important result here!

Simple Properties on Convolution:

Linear operation which is distributative, so that for three functions f (x), g(x) and h(x)

f (x)� (g(x)�h(x)) = ( f (x)�g(x))�h(x)

and commutative, so that

f (x)�h(x) = h(x)� f (x)

If f (x) and h(x) are of finite width, then extent (or “width”) of g(x) is given by the sum of the widths
the two functions.
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Convolution with Comb

Convolution of a function f (x) with a Comb(x) function results in replication of the function at the
comb spacing.

f(x) s(x) f(x)      s(x)

=

(obvious from the shift theorm).

Which then Fourier Transforms to give

F { f (x)� s(x)} = F(u)S(u)

where S(u) is also on Comb or recriprocal spacing. This is fundamental to Sampling Theory.
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Two Dimensional Convolution

Extension to two-dimensions is simple with,

g(x,y) = f (x,y)�h(x,y) =

Z Z

f (s, t)h(x− s,y− t)dsdt

which in the Fourier domain gives the important result that,

G(u,v) = F(u,v) H(u,v)

The most important implication of the Convolution Theorem is that,

Multiplication in Real Space ⇐⇒ Convolution in Fourier Space
Convolution in Real Space ⇐⇒ Multiplication in Fourier Space

which is a Key Result, especially in optics.
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Correlation of Two Functions

A closely related operation is Correlation. The Correlation between two function f (x) and h(x) is

c(x) = f (x)⊗h(x) =
Z ∞

−∞
f (s)h∗(s− x)ds

Note for real h(x), different only by a −sign.

x

f(s)h(s−x)

h(s)f(s)

h(s−x)

f(s)h(s−x)

x>0

c(x)

0

s
x

0

0 s

x<0

s

so second function is not reversed.
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Correlation between Two Functions I
In the Fourier Domain the Correlation Theorem becomes

C(u) = F(u) H∗(u)

where

C(u) = F {c(x)}
F(u) = F { f (x)}
H(u) = F {h(x)}

This which is distributative, but however is not commutative, since if

c(x) = f (x)⊗h(x)

then we can show that

h(x)⊗ f (x) = c∗(−x)

In two dimensions we have the correlation between two functions given by

c(x,y) = f (x,y)⊗h(x,y) =
Z Z

f (s, t)h∗(s− x, t − y)dsdt

which in Fourier space gives,

C(u,v) = F(u,v) H∗(u,v)

Correlation is used in optics to to characterise the incoherent optical properties of a system and in
digital imaging as a measure of the “similarity” between two images.
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Autocorrelation

Special case of correlation of a function with is self is Autocorrelation being,

a(x,y) = f (x,y)⊗ f (x,y)

so that in Fourier space we have,

A(u,v) = F(u,v) F∗(u,v) = |F(u,v)|2

which is the Power Spectrum of the function f (x,y).

Autocorrelation of a function is given by the Inverse Fourier Transform of the Power Spectrum

a(x,y) = F −1{|F(u,v)|2
}

In this case the correlation must be commutative, so we have that

a∗(−x,−y) = a(x,y)

If f (x,y) is real, then a(x,y) is real, so is symmetric.

If we detect the Power Spectrum of object, we cannot reform the object, only is autocorrelation.

A
PP

LIED OPTICS GROU
P

D
E

PA

RTMENT of PHYSI
C

S Fourier Transforms -31- Semester 2



Fourier Theory for Optics T
H

E

U N I V E R
S

I T
Y

O
F

E
D I N B U

R
G

H

Summary

This lecture covers the practical aspects of the Fourier Transform at its applications mainly in two-
dimensional systems.

1. Introduction and Notation

2. The Fourier Transform and its Properties

3. The Dirac Delta Function

4. Symmetry Conditions of Fourier Transforms

5. Convolution and Correlation

6. Summary
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