Fourier Theory for Optics

Fourier Theory

Aim: The lecture covers the Fourier Theory as detailed in FOURIER TRANSFORM, (WHAT YOU
NEED TO KNOW).
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Notation
The notation maintained throughout will be:

X,¥y — Real Space co-ordinates
u,v. — Frequency Space co-ordinates

and lower case functions f(X), being a real space function and upper case functions (eg F(u)),
being the corresponding Fourier transform, thus:

Flu) = F{fX);
fx) = F '{F(u)}

where 7 {} is the Fourier Transform operator.

The character | will be used to denote v/ —1.
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Two special functions,

The sinc() Function:

-0.4

Special Functions

sin(X)

sinc(X) =

‘sinc(x)
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Special Functions

The Top-Hat Function:

M(x) 1 for|x| <1/2

0 else

begin of unit height and width centered about x = 0,
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The Fourier Transform

For dimensional continuous function, f(X)

F(u) = /_o; f(x) exp(—121X) dx

with inverse Fourier transform by;

f(x) = /oo F(u) exp(121ux) du

If f(x) is a real signal
F(u) =FK(u)+1FR(u)
where we have,

F(u) — / £ (x) cos(2Tux) dx
Fu) = — / £ (x) sin(21LX) dx
Desomposition of f(x) into cos() and sin() terms.

The u variable is interpreted as a frequency, so. f(x) is a sound signal X in seconds.

F(u) is its frequency spectrum with U measured in Hertz (s !).
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Properties of the Fourier Transform
The Fourier transform has a range of useful properties, some of which are listed below.

Linearity: The Fourier transform is a linear operation, so.

F {af(x)+bg(x)} =aF(u)+bG(u)

Central when describing linear systems.

Complex Conjugate: The Fourier transform Complex Conjugate of a function is given by

FATXr=F(=u)

where F(u) is the Fourier transform of f(x).

Forward and Inverse: We have that

FAF(U)}=T(=x)

apply Fourier transform twice, get a spatial reversal.

Similarly with inverse Fourier transform

FHIX)}=F(-u)

so that the Fourier and inverse Fourier transforms differ only by a sign.
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Properties of the Fourier Transform |

Differentials: The Fourier transform of the derivative is

F {dgg(x) } = 12TUF (U)

and the second derivative is given by
d?f(x
7{ dx(z )} = —(21u)*F (u)

Used frequently in signal and image processing.

Power Spectrum: The Power Spectrum is modulus square of the Fourier transform
2
P(u) = [F(u)]

. This can be interpreted as the power of the frequency components.

Any function and its Fourier transform obey the condition that

[ 1toPax = [ F@Pa

—00

which is frequently known as Parseval’'s Theorem.

Power in real and Fourier space in the same.

Fourier Transforms

-7-

Semester 2



Fourier Theory for Optics

Two Dimensional Fourier Transform

Two dimensional Fourier transform of a function f(x,y) by,

F(u,v)://f(x,y)exp(—|2n(ux+vy))dxdy

with the inverse Fourier transform defined by;

f(x,y) ://F(u,v)exp(lzn(ux+vy))dudv

Real function f(X,y), the Fourier transform can be considered as the decomposition of a function
into its sinusoidal components.

Note: X,y usually have dimensions of length.
Fourier space variables u,Vv dimensions of inverse length, called Spatial Frequency.

Clearly the derivatives then become

T{afg;’y)} = 12TuF (u,v) and Sf{afg;’y)} = 121vF (u,V)

yielding the important result that,

F{O*f(x,y)} = —(2TwW)*F(u,v) where w? = u?+V?
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Two Dimensional Fourier transform |l

Two dimensional Fourier Transform of a function is a separable operation.

F(u,v) :/P(u,y)exp(—|2n\/y)dy
where

P(uy) = / f(x,y) exp(—I121TX) dx
where P(u,y) is the Fourier Transform of f(X,y) with respect to x only.

Special case when f(X,y) also seperable, so that

f(x,y) = fa(x) fu(y)
then we have that

F(u,v) = Ra(u) Fy(v)
where

Fa(u) = F{fa(x)} and Fu(v)=F{fn(y)}

vastly simplifying the calculation.
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The Three-Dimensional Fourier Transform

Three dimensional case we have a function f(F) where T = (Xx,Y,z), then the three-dimensional

Fourier Transform
F(s) = / / / f(F)exp (—121.5) dF

where §= (u,v,w) being the three reciprocal variables each with units length~1.

Similarly the inverse Fourier Transform is given by

///F exp (1210.5) dS

Used extensively in solid state physics where the three-dimensional Fourier Transform of a crystal
structures is usually called Reciprocal Space.
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Dirac Delta Function

Dirac Delta Function, which is somewhat abstractly defined as:
ox) = 0 for x # 0
/ Sx)dx = 1
“tall-and-thin” spike with unit area located at the origin,

A o( x)

| | | | | >
-3 -2 -1 0 1 2 3

not an “infinitely high” since it scales,

where a is a constant.
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Dirac Delta Function Il

There are a range of definitions in terms of proper function, are:

2
B0 = mew(r)
Ag(X) _ %I_I <X8§8>
Ne(X) = %sinc (2)

all have the property that,
/ Ne(X)dx =1 Ve
and we may form the approximation that,

O(X) = lim Ag(X)

e—0

which can be interpreted as making any of the above approximations A¢(X) a very “tall-and-thin”
spike with unit area.
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Dirac Delta Function Il

In the field of optics and imaging useful to define Two Dimensional Dirac Delta Function

o(x,y) = 0 forx#0&Yy=+#0
//6(x,y)dxdy = 1

which is the two dimensional version of the &(x) function defined above, and in particular:

O(X,y) = d(x) d(y).

Can be considered as a single bright spot in the centre of the field of view, for example a single
bright star viewed by a telescope.
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Properties of the Dirac Delta Function

For a function f(X) we have that

/_w 5(x) f(x)dx = £(0)

which is often taken as an alternative definition of the Delta function. Extended to the Shifting
Property of

/_ooé(x—a)f(x)dx:f(a)

where (X — @) is just a d-function located at x = a

f
() | (@)

/

=Y

In two dimensions, for a function f(X,y), we have that,

//6(x—a,y—b) f(x,y)dxdy = f(a,b)

where d(x —a,y — b) is a &-function located at position a, b.

Y OPTICs
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Properties of the Delta Function |

The Fourier transform by integration of the definition,

F{3(x)} = / X) exp(—127ux) dx — exp(0) = 1
and then by the Shifting Theorem we get that,
F{d(x—a)} =exp(12mau)
typically called a phase ramp.
Noted that the modulus squared is
F {8(x—a)}|* = [exp(—12mau) | = 1

the power spectrum a Delta Function is a constant independent of its location.
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Properties of the Delta Function Il

Two Delta Function located at +-a, then

F{d(x—a)+d(x+a)} =exp(121Au) + exp(—I12TAU) = 2 cos(2TAU)
while if we have the Delta Function at X = —a as negative,

F{d(x—a)—9d(x+a)} =exp(121awuU) — exp(—I121AU) = 2Isin(2TEAU)

So we get the two useful results that

[d(u+a)+d(u—a)]

D | —

F {cos(21AX)} =
and that
F {sin(2TRAX)} = % [d(u+a)—d(u—a)]

So that the Fourier transform of a cosine or sine function consists of a single frequency.
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The Infinite Comb

Series of Delta functions at a regular spacing of Ax,, giving

Combay(X) = i O(X — IAX).

i:—OO

A X
_> <_

A A

< Y

—A =D x-A XA x g Ax 2Ax 3Ax 4Ax

Fourier transform is sum of the Fourier transforms of shifted Delta functions,

(e¢]

F {Combax(X)} = Z exp(—I12TiAxu)

i:—OO
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The Infinite Comb |

Now the exponential term,

exp(—121Axu) =1 when 2TAXU = 2T

so that:

exp(—I121iAXxu) — o whenu= 5

i:—OO
= 0 else

which is an infinite series of d-function at a separation of Au = ﬁ.
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The Infinite Comb 11

So that an Infinite Comb Fourier transforms to another Infinite Comb

F {Combax(x)} = Combpy(u)  with Au = 2>

1/A x
-

A A

—28 X —1A X 0 1/A X 2IAx U
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Symmetry Conditions

For a real function has a complex Fourier Transform.

This Fourier Transform has special symmetry properties that are essential when calculating and/or
manipulating Fourier Transforms.

One-Dimensional Symmetry: Since f(X) is real then,
F(u) =F(u)+1F(u)
where we have
F(u) — / £ (x) cos(2Tux) dx
AW = [ 10 sin(2rux)dx
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Symmetry Conditions |

now cos() is a symmetric function and sin() is an anti-symmetric

1 T T T T 1
08 | 1 08 |
06 [ 1 06 [
04 | 1 04 |
02 | 1 0.2 {

0 0

-0.2 - 1 -0.2 -

-0.4 - 1 -0.4 -

-0.6 - 1 -0.6 -

-0.8 - 1 -0.8 -

b L L L L L b

Fr(u) is Symmetric and F(u) is Anti-symmetric
which can be written out explicitly as,
F(u)=FK(-u) and F(u)=—-F(-u)
The power spectrum is given by
[F(u)|* =F(u)’+F(u)’
then clearly the power spectrum is also symmetric with
F()l*=F(-u)?

so when the power spectrum of a signal is calculated it is normal to display the signal from 0 — Up.x
and ignore the negative components.
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Symmetry Conditions Il

Two-Dimensional Symmetry real fucntion f(x,y), then
F(u,v) =F(u,v)+1FR(u,v)

expand exp() functions into cos() and sin() we get that

F(u,v) = / / f(x,y) [cos(2TUX) cos(2Tvy) — sin(2TX) sin(2Tvy )] dxdy

F(U,v) = / / £ (x,Y) [cos(2TLX) sin(27vy) + sin(2Tux) cos(2Tvy)] dxdy

real part is symmetric and the imaginary part is anti-symmetric,

Fr(ua\/) — Fr(_u7 _V)
F(-uv) = FK(u,-v)
for the real part of the Fourier transform, and
FI<U7V> - _FI<_U7 _V>
F(—uyv) = —F(u,—v)

for the imaginary part.
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Symmetry Conditions IV

The power spectrum is also symmetric, with

[F(u,v)|” F(—u,—v)[
F(-uv)]® = |F(u-v)P

(—u,v) (OV) (u,v)
A

- |
(—u,0) (u,0)

\
(=u-v) (0,~v) (U,=v)
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Convolution of Two Functions
Convolution is central to Fourier theory.

Convolution between two functions, f(x) and h(x) is defined as:

g(x) = f(x / f(s)h(x—s)ds

where S is a dummy variable of integration.
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Convolution of Two Functions |

Area of overlap between the function f(x) and the spatially reversed version of the function h(x).

f(s) h(s)

—1<x<0 O<x<l1
a(x)
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Convolution of Two Functions Il

The Convolution Theorem is

where

Gu) = F{9x)}
Flu) = F{fXx);
Hu) = Fih(x);

This is the most important result here!
Simple Properties on Convolution:

Linear operation which is distributative, so that for three functions f(x), g(x) and h(x)

f(x) @ (9(x) ©@h(x)) = (f(x) ©9(x)) ©h(x)
and commutative, so that
f(x) ©h(x) =h(x)® f(x)

If f(x) and h(x) are of finite width, then extent (or “width”) of g(X) is given by the sum of the widths
the two functions.
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Convolution with Comb

Convolution of a function f(x) with a Comb(X) function results in replication of the function at the

comb spacing.

f(X) s(x) fX) o s(x)

(obvious from the shift theorm).

Which then Fourier Transforms to give

FAX)Os(x); =F(u)S(u)

where S(u) is also on Comb or recriprocal spacing. This is fundamental to Sampling Theory.
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Two Dimensional Convolution

Extension to two-dimensions is simple with,

() = () @h(xy) = [ [ f(s.0(x—s,y~t)dsd
which in the Fourier domain gives the important result that,

G(u,v) =F(u,v)H(u,v)

The most important implication of the Convolution Theorem is that,

Multiplication in Real Space <= Convolution in Fourier Space
Convolution in Real Space <= Multiplication in Fourier Space

which is a Key Result, especially in optics.
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Correlation of Two Functions

A closely related operation is Correlation. The Correlation between two function f(x) and h(x) is

c(x) = f(X) @h(x) = / f(s)h*(s—x) ds
Note for real h(x), different only by a —sign.

f(s) h(s)

h(s—x)

f(s)h(s—x) X f(s)h(s—x,

x>0 x<0

c(x

so second function is not reversed.

Fourier Transforms -29- Semester 2




Fourier Theory for Optics

Correlation between Two Functions |
In the Fourier Domain the Correlation Theorem becomes
C(u) =F(u)H"(u)
where
Cuy = Ficx)}
Fu = F{f(x)}
Hu) = F{h(Xx)}
This which is distributative, but however is not commutative, since if
c(x) = f(x) ®h(x)
then we can show that
h(x) ® f(X) =c*(—X)

In two dimensions we have the correlation between two functions given by

clxy) = F(xy) 2h(xy) = [ [ F(s0h"(s—x,t—y)dsdt
which in Fourier space gives,
C(u,v) =F(u,v)H"(u,v)

Correlation is used in optics to to characterise the incoherent optical properties of a system and in
digital imaging as a measure of the “similarity” between two images.
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Autocorrelation
Special case of correlation of a function with is self is Autocorrelation being,
a(xy) = f(x,y) @ f(x,y)
so that in Fourier space we have,
A(u,v) = F(u,v) F*(u,v) = [F(u,v)|?
which is the Power Spectrum of the function f(X,y).

Autocorrelation of a function is given by the Inverse Fourier Transform of the Power Spectrum

a(x,y) = F ' {|F(uv)*}

In this case the correlation must be commutative, so we have that

a’(—x,—y) =a(xy)
If f(x,y) is real, then a(x,y) is real, so is symmetric.

If we detect the Power Spectrum of object, we cannot reform the object, only is autocorrelation.
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Summary

This lecture covers the practical aspects of the Fourier Transform at its applications mainly in two-
dimensional systems.
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