C Finding and Fixing Bugs

C.1 Introduction

As you will quickly find the BUG is the pain of all programmers existence. This section looks
at the most common types of BUGS and some of the strategies for finding and fixing them.

Remember: Computer are inanimate pieces of electronics with no inherent intelligence or mal-
ice; they do “exactly” what you tell them to do, wrong though it may be! Both JAVA and
UNIX operate on the YAFI-YOGI (You asked for it - You got it) principle, which means that a
non-working program means you have put a mistake into it.

C.2 Types of “Bugs”

Basically there are three types of BUGS, these being:

Syntax Errors: You have a mistake in the syntax of a statement in the JAVA code. Such errors
usually mean that no class file is produced, or if it is produced it is very unlikely to work
correctly. Then you compile your program, with javac, you will get error messages and the
“line number” where the compiler first noticed the errors. The most common errors are:

1. Forgetting to declare a variable, or miss-spelling the name of the variable either in the
declaration or when used in the code. You will get an error message of the form:

CheckPoint_4.java:10: cannot resolve symbol
symbol : variable xValeu
location: class IfTry

if (xValeu > 5) {

~

This means at line 10 of file CheckPoint_4. java the compiler found a variable called
xValeu which it was not expecting to find. It also shows you the line where the error
occured.

2. Getting the name or calling parameter of a method wrong will result

CheckPoint_4.java:10: cannot resolve symbol
symbol : method setColour (int)

location: class cplab.DataSet
data.setColour(3);

~

Remember correct spelling is vital, also if you supply the wrong parameters the compiler
will tell you that it cannot resolve symbol since the parameter type list is part of the
definition of the method.

LA

3. Forgetting the *“;” at the end of a statement. You will typically get as error message of
the form:

SESSION 2005/2006 VERSION 3.4, 27 AUGUST 2005

IfTry.java:17: ';’ expected
System.out.println("Value of x is :" + xValue)

~

with the ~ “showing” you where the compiler thinks the ; should go. Remember it is the
compilers “guess” and it may not be correct!

“n n’»

4. Forgetting to close the round a string, the “{ }” round a group of statements, or
the “/* */” round comments. You will get a variety of odd errors, most of which make
sensible suggestions as to what is wrong. Most of these problem are picked up by the
colour highlighting in emacs.

5. Forgetting an import file at the top of the program. For example if you try and use Graph
object without including gov.noaa.pmel.sgt.cplab. * you will get:

CheckPoint_4.java:8: cannot resolve symbol
symbol : class SimpleGraph
location: class CheckPoint_4

SimpleGraph graph = new SimpleGraph();

which means the compiler was not expecting SimpleGraph since you forgot to tell it to
lookin ...cplab.*.

6. General syntax errors in statements, for example in arithmetic statements, assignments
or loops. Again the compiler will give you the line number where the error occurs.

Fix syntax errors one at a time, starting with the first error detected. Remember that one simple
error, for example a missed “}” can result in dozens, sometimes hundreds, of totally spurious,
errors message from other parts of the program that are actually perfectly correct!

Runtime Errors: These occur when the program compile successfully but when you try and
run it, it either crashes with an Exception or in the worst case does not appear to do anything at
all!

There are a vast range of possible Expections, however at this level of programming the most
likely are:

1. NumberFormatException, normally combined with
at java.lang.FloatingDecimal.readJavaFormatString...

means you have tried to read a number from a String that contained something other
that a sensible number. When using the Display class, this means that you types rubbish
into a prompt field that was expecting an int or a double.

2. ArrayIndexOutOfBoundsException: Your program has tried to access “off the begin-
ning or end” or an array. Again the line number will tell you where this happened.

SESSION 2005/2006 VERSION 3.4, 27 AUGUST 2005

3. Floating Point Errors: Your program has tried to created a double number greater than
10°%8. This usually means you have tried to divide by zero (or a very small number),
or you have gone round a loop far more times than you wanted and some number has
got “very big”. The double gets set the NaN or Infinity but the program continues,
producing rubbish.

4. Nothing Happens: Your program is either:
(a) Waiting for input, Look for .waitForButtonPress() statements in the wrong
place, or multiple Display panels when you only wanted one.
(b) Charging aimlessly, and non-productively round a infinite loop without ever getting
to its termination condition.
To stop the program type Ctr1-C (both keys at once).

The debugging strategy depends on the complexity of the program. For the type of
programs you are writing at the moment usually “reading through” the code is enough to
spot the mistake. The most common ones are:

(a) Forgetting to assign a value to a variable, which defaults to zero, then using it as-
suming it has a non-zero value. Overflows and Infinity loops.

(b) Miss-placed “;” in loop, for example

int x 1;
while (x < 100) ;
{

< rest of loop>;

will loop infinitely since the miss-placed ““;” means the while loop has a single null
instruction as the loop body, and not the section in “{ }” as you expect!

(c) Forgetting to update the loop variable.

(d) Using “==""test on f1oat numbers which, due to rounding errors, is always false.
Note:

boolean testValue = Math.sqrt(2.0)*Math.sqrt(2.0) == 2.0;

will set testValue to false since not all 64 bits of Math.sqrt(2.0)*Math.sqrt(2.0)
will be identical to 2.0.

If “reading the code” fails, then there are two strategies, these being:

(a) Insertprintln() statement to check the value of key variables in the program. This
is the “old-way” but is simple and valuable for finding errors in simple programs.

(b) Use an interactive debugger or profiler. At present line debuggers for JAVA are very
clumberson and complex, not a sensible strategy for programs at this level (yet)?

Working Program — Wrong Results: This is the real fun one! If the program produces:

SESSION 2005/2006 VERSION 3.4, 27 AUGUST 2005

1. UTTER RUBBISH: For example a CONSTANT no matter what input you supply. The most
likely problem is a program bug as discussed above. For example forgetting to assign a
value to a variable, mistake in a loop which means that it never get executed etc. Search
for bugs as described in the Runtime Errors above.

2. ALMOST RIGHT RESULTS: For example the right results with some data, wrong for
others. This is not likely to be simple coding error, much more likely to be an error in
the logic of the code, for example some conditional statement is wrong. This is tough to
find.

There is also the worse-case synario, you have the underlying mathematics and/or physics
of the calculation wrong. Then no matter how much you “play” with the program it will
still always produce wrong results!

Finally when you do make changes to the source code with emacs remember to use SAVE
BUFFER to update the source file on disk and compile the modified code with javac. I would
prefer not to think about how many times I have failed to do one or other of these!

C.3 Problems with the Systems

Big computer system do sometimes “go wrong”. This usual symptom is they become very
slow to respond or stop responding all together. This can be caused by anything from too many
people trying to run big programs to a hardware fault on the server. If this happens:

1. Stop trying to do anything. Trying to open a new window or “playing” with the mouse
will only make things worse. If however you are running a program that may have
“looped” it may be you causing the problem. Try stopping it with Ctr1-C as discussed
above or using the Kill option to stop the terminal window.

2. If nothing improves within about 30 secs:

(a) Call a demonstrator or see Mrs Mclvor in the computing office for help.

(b) If there is nobody else the laboratory try and Exit the Window Manager, (try and
log-off). If this also fails, leave the system alone, do not switch-off but leave a note
on the terminal and/or see Mrs Mclvor as soon as possible.

C.4 Myths, General Miss-conceptions and Classic Excuses

Round computing there are a whole series of myths, miss-conceptions and total rubbish, a few
of which are:

1. The computer does “what you tell it” it is a deterministic machine without intelligence.
It does not have a personal vendetta against you, despite what you may feel when all
the other students programs run perfectly and yours completely fails! Comments like “it
does not like me” will be treated with scorn and ridicule!

2. Repeating the same compile or execute many times “in case the computer made a mis-
take” just wastes your time and add to your frustration and stress levels. You will get the
same answer each time. Your program will not magically start working.

SESSION 2005/2006 VERSION 3.4, 27 AUGUST 2005

3. The chance of the “computer being wrong”, that is you finding a mistake in the compiler
or system is about the same as you been struck by lightening on the way home! All non-
trivial pieces of software do have “bugs” but the bugs in the compiler are likely to be so
obscure that none of the simple program that you will write will show them up.

4. The PC urban myth of “the program getting corrupted on disk” would result on the whole
computer system crashing with lots of “panic” messages. It would not just effect your
program. This problem does occur with Windows-95/98/2000 but not on UNIX.

5. The “the computer lost my program” is just possible, but it would not loose just yours.
Lost files mean a computer hard disc fault which typically looses many files with lots of
“panic” message. In this unlikely event we are able to “restore” your files to the state
they were in “yesterday evening”. This has only happened once in 8 years of running the
CP-Lab, so it is very unlikely. If a file vanishes from the system it means you deleted it.

6. The “somebody hacked into my account and changed my files” is very unlikely unless you
gave them your password; in which case tough! There is a finite chance of a machine
being “hacked into” but if somebody does succeed in doing this is is rather unlikely they
would modify one persons file when there is a whole system to muck up!

Experimental observation of the probability of “occurances” 4,5, & 6 suggest a relation of the
form exp(—AT?) where AT is the time (in days) left before a programming project deadline is
due!

SESSION 2005/2006 VERSION 3.4, 27 AUGUST 2005

	Finding and Fixing Bugs
	Introduction
	Types of ``Bugs''
	Problems with the Systems
	Myths, General Miss-conceptions and Classic Excuses

