4 Checkpoint 4

Aim of Checkpoint

This checkpoint explores the behaviour of a damped simple harmonic oscillator for a range of damping coefficients. It involves writing a medium sized JAVA program to trace out the amplitude against time for a damped SHM oscillator under a range on conditions.

From a computing viewpoint this checkpoint demonstrates the use of loops, calling standard Math mathematical methods and the SimpleGraph class combined with the Display class. From a Physics 2A viewpoint it illustrates the results from the vibration lectures that you will have / are about to, complete.

This checkpoint is worth **30%** of the course mark. *This is also the starting point for more experienced* JAVA*programmers.*

Submission Dates

It is expected that this checkpoint is completed during the **fourth** or **fifth** laboratory session. Final submission date for this checkpoint is: **5.00 pm, Thursday 3rd November**

Damped SHM

As discussed in detail in the Physics 2A lectures, the damped simple harmonic oscillator satisfies the second order differential equation,

$$m\ddot{x} + b\dot{x} + kx = 0$$

where *m* is the mass of the oscillator, *b* is the coefficient of damping, and *k* is the harmonic force constant. Defining new constants $\gamma = b/m$, and $\omega_0^2 = k/m$, we can re-write this as:

$$\ddot{x} + \gamma \dot{x} + \omega_0^2 x = 0$$

where ω_0 is the *natural frequency* of the undamped oscillator.

The solutions to this equation has the following forms:

$$\begin{aligned} x &= \exp\left(-\gamma t/2\right) \left(a\cosh(pt) + b\sinh(pt)\right) & \text{when } \gamma > 2\omega_0 \text{ with } p^2 = \left(\gamma^2/4\right) - \omega_0^2 \\ x &= \exp(-\gamma t/2)(a + bt) & \text{when } \gamma = 2\omega_0 \\ x &= \exp(-\gamma t/2) \left(a\cos(\omega t) + b\sin(\omega t)\right) & \text{when } \gamma < 2\omega_0 \text{ with } \omega^2 = \omega_0^2 - \left(\gamma^2/4\right) \end{aligned}$$

where these three conditions are known as "over damped", "critically damped" and "under damped" respectively.

Read these equations very carefully and watch where the brackets are.

With the initial conditions that x = 1 and $\dot{x} = 0$ at t = 0 the above constants, after some manipulation, become,

$$a = 1 \quad b = \gamma/2p \quad \text{when } \gamma > 2\omega_0$$

$$a = 1 \quad b = \gamma/2 \quad \text{when } \gamma = 2\omega_0$$

$$a = 1 \quad b = \gamma/2\omega \quad \text{when } \gamma < 2\omega_0$$

You should check these results for yourself.

Checkpoint Task

Write an interactive JAVA program to compute and display via the SimpleGraph class the solution for x against t for t in the range $0 \rightarrow 5\pi/\omega_0$. Your program should:

- 1. Read in the value of ω_0 and γ from the a Display input panel.
- 2. Calculate and plot the output with the SimpleGraph class.
- 3. Re-prompt for new values of ω_0 and γ .
- 4. Replot the output *either* on the same graph, **or** in a new window.

To obtain a good smooth graph you need to calculate the above expression for at least 200 evenly spaced values of t.

Warning: The structure of this program is reasonably complex. Think very carefully how you are going to structure it before you start. Also be **very careful** when coding the expression for the amplitude of the oscillation, in particular make sure it is calculating what you expect!

End of Checkpoint

When you have completed your program, call a demonstrator and show them the code and the program working for all **three** dampling conditions. This is the end of **checkpoint 4**. Ensure that the demonstrator checks off your name.

Material Needed

In addition to the material for Checkpoint 3 you will need material from the following documents:

- 1. Loops.
- 2. Graphical Output.

What Next?

You should now read the next two, fairly complex, sections on Array and Methods before attempting the next Checkpoint.