

## **Topic 1: Models in Optics**

Aim: Review the of models used in optics, and the range of validity of each

#### **Contents:**

- Ray Optics
- Ray Wave Theory
- Vector Ray Theory
- Scalar Wave Theory
- Vector Wave theory
- Photon Models (QED)

## **Ray Optics**

**Model:** Steam of "balls" that obeys Snell's Law of refraction at a surface.



$$n_1\sin(\theta_1)=n_2\sin(\theta_2)$$

Is this simple model really useful ?





### **Simple Lens**



### Imaging properties of

| 1 | 1              | 1              | and | $M = \frac{v}{v}$               |
|---|----------------|----------------|-----|---------------------------------|
| u | $\overline{v}$ | $\overline{f}$ |     | $\frac{w_{I}}{u} = \frac{u}{u}$ |

### **Thin Lens**



The focal length is given by

$$\frac{1}{f} = (n-1)\left[\frac{1}{R_1} + \frac{1}{R_2}\right]$$

These expressions will also appear in the more advanced theories.

Seen in Physics 2 Lab and Physics 3 Optics.





## **Use of Ray Optics**

Tracing rays through complex systems



Focal Length (f)

Ray tracing to determine lens characteristics



For "ideal" lens we get single point, but for aberrated lens we get indication of Point-Spread-Function (PSF).

### **NO DIFFRACTION EFFECTS INCLUDED**





## **Design of Lens System**

Typical systems:

- Camera Lens [4 to 20 Elements]
- Microscope Objective [3 to 10 Elements]
- Photocopier objective [6 to 8 Elements]
- Telescope [2 Mirrors plus 0 to 4 glass elements]

Mostly complex system with multiple glass surfaces (almost always spherical).



Iterative error reduction, (highly non-linear).

Ideal Computer application, one of the first tasks ever transferred to computer [1956].

Look at this again in Lecture 9/10.





## **Ray Wave Theory**

Add "wave nature" of light by considering light to be rays that spread out and interfere to give "node" and "anti-nodes".



Young's Slits we get a bright fringe at:

 $d\sin\theta = \pm n\lambda$ 

This theory gives the correct resuults for:

- Diffraction Gratings, so spectroscopy.
- Interferometry: (Michelson, Twyman-Green, Fabre-Perot, thin films.)

This theory introduces wave properties to get interference, but still

### **No Diffraction**

Very useful theory, used in most of Physics 3 Optics. We will use this again for Holography at end of this course.





## **Vector Ray Theory**

Add "vector" properties of light to ray model by assuming orthogonal **E** and **B** field. Solve continuity equations at boundries.

This gives Polarisation effects, for example,

- Polarisation on reflection: Brewster's angle, Fresnel's Equations.
- Malus Law: transmission of polarisers, quarter/half wave plates.
- Birefrigence: Linear crystal optics, beam-splitters, Nicol prisms.
- Evanescent Waves: classical barrier penetration, skin depth, planar waveguides.

This theory typically does not contain infererence or diffraction.

Seen in Physics 3 Electromagnetism and Physics 3 Optics.

Simple polarisation problems can be formulated as Jones Matrices (very similar to spin operators), more complex, mixed polarisation, by Stokes Matrices.





### **Scalar Wave Theory**

Electro-magnetic theory with light field characterised by Scalar Potential.

Valid for objects & apertures  $\gg \lambda$ .

Gives diffraction as integral expression (mathematical version of Hygen's Secondary Waves)

**Uses:** 



Able to calculate analytic PSF of lens.

Allows use of Fourier Techniques to predict effect of diffraction. Basis of Image Formation, Holography, and Optical Processing. (This Course)

#### **Problems:**

- 1. Monochromatic light assumed (developed to include Partial Coherence).
- 2. No polarisation effects, (added by Jone's matrices)
- 3. Breaks down at wavelength structures
- 4. Breaks down an very high & low intensities.





### **Vector Theory**

Light is electro-magnetic wave with  ${\bf E}$  and  ${\bf B}$  vectors linked by Maxwell's Equations.

If we know boundary conditions, solved for **E** and **B** fields.

Example: The Thick Slit.



Here Scalar Diffraction not valid, due to "Waveguide" effects in the slit.

In Practice only able to solve for very simple systems,

- 1. Thick Slit
- 2. Edge
- 3. Infinite metal grating
- 4. Infinite dielectric grating

Even then with great difficulties.





## **Fibre Optics**

Glass "fibre" with core down to  $1.5\mu$ m.

Typical fibre,  $5\mu$ m glass core and  $125\mu$ m cladding.



Needs vector treatment, but simple geometry. Solutions identical to wave guide, including mode structure.

Thinnest fibre's support only one mode, (mono-mode)

### **Other Areas:**

- Radar systems ( $\lambda \approx 3 cm$ )
- Radio transmissions ( $\lambda \approx 3cm$  to km)
- Radio telescopes ( $\lambda \approx 1 cm$  to 1m).

Design of these systems requires solution of the vector field problem. Either approximated by scalar field (with care), or solved by numerical simulation.





### **Quantum Theories**

Light is "really ?" and quantised vector field with light propagating as photons.

Quantum effects at High & Low Intensities

#### **High Intensities**

At low intensities, elastic scattering of photons from material, but at high energies Inelastic Scattering.

Non-linear effect which are Intensity Dependent.

### Examples

- Raman scattering (non-linear photon)
- Frequency Doubling (two photon processes)
- Four Wave mixing (intensity dependent refractive index)
- Optical Bi-stability (intensity dependent refractive index)

Non-linear effects can be induced in any material, with enough power.

Range of "Optically Active" materials, get non-linear effect at low(ish) powers

# $BSO_6$ $BaTiO_4$ GaAs $LiNbO_3$ LiquidCrystalsSome discussion in Atomic and Molecular Physics and Laser Physics courses.





### Low Intensities:

Linear interaction with materials, but detect a quantised intensity, (whole Photons).

Measure a probability function, (approximate a probability function), but also quantum effects.

### Effects

- 1. Noise in detected signal (fundamental problem at low light levels).
- 2. Intensity correlations (quantum effect used in radio interferometry).
- 3. Squezzed States: quantum states at low light levels, similar to low temperature statistical effects.

Modern, specilised area of optics, not able to put much of this in an undergraduate physics course.

