
Tutorial Solutions

11 Optical Processing

11.1 Focus of a Laser Beam

A collimated He-Ne laser beam (633 nm) with a Gaussian amplitude of

u0(x;y) = Aexp

�
�

r2

r2
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�

is focused by a�40 microscope objective. Calculate an expression for the amplitude, and
intensity distribution in the back focal plane of the objective.

Hint: Assume that the pupil function of the microscope objective is much larger that the laser
beam.

If r0 = 0:4mm calculate the diameter of the input beam and the spot in the back focal plane.
For a Gaussian beam the “diameter” is defined by the points that theintensitydrops toe�2.

Solution

Part a: If pupil function ismuchwider than the beam, then the “effective” pupil function of
the lens will be Gaussian, being given by:

u0(x;y) = Aexp
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wherer2 = x2 + y2. The amplitude in the back focal plane is then just the scaled Fourier
Transform of this, begin
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where f is the focal length of the objective, in this case�40 so 4 mm (See solution 1.3).

The Gaussian is seperable (see Fourier Booklet, question/solution 1.3), so we need only con-
sider the 1-D integral, Z
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From Fourier Booklet (solution 1.3) we have the standard result that
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we get the solution to the above integral to beq
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so in two dimensions we get that the amplitude in the back focal plane is

u2(x;y) = B̂0Ar2
0π exp
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�

where

p0 =
f λ
πr0

which is also a Gaussian (as we would expect), withe�1 point given byp0.

Part b: The intensity of the input beam is given by

i(x;y) = ju0(x;u)j
2 = A2 exp

�
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2r2
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so thee�2 point is simply given byr = r0. The diameter of the input beam is thus 0.8 mm (This
is typical of a small He-Ne laser like the ones in the P4 optics laboratory).

Similarly in the back focal plane thee�2 will be given byr = p0, which for f = 4mm, and
λ = 633nm, gives a daimeter of 4:03µm.

This result will be used again in the optical processing and spatial filtering lectures.

Bote: if the pupil function is not “much winder” than the Guassian beam we then get a product
of the pupil function p(x;y) and the Guassian beam in the pupil which results is the convolution
of the focused Guassian and the amplitude PSF of the lens.

11.2 Fourier Properties of a Lens

dx

Show that if a slide of amplitude transmissionfa(x;y) is illiminated with a coherent collimated
beam in the front focal plane of a lens of focal lengthf , then in the back focal plane the
amputide distribution is the scaled Fourier Trasnform of the object.

Hint: First calculate this for the general case of the slide being a distancez in-front of the lens,
and then look at the special case ofz= f .

Solution

Consider the general system withfa(x;y) a distancez in-front of a lens,

P0
P1 P’

1
P
2

fz

u  (x,y)

f  (x,y)a

2

If this is illuminated with acoherentbeam of unit amplitude, then in planeP0 we have

u0(x;y) = fa(x;y)
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Then in planeP1 a distancez we get an amplitude

u1(x;y) = u0(x;y)�h(x;y;z)

whereh(x;y;z) is theFree Space Propagation Function. If we assume that we are in the Fresnel
region, then we have that

h(x;y;z) =�ıλ
exp(ıκz)
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so we can write out the full expression foru1 to be

u1(x;y) = B0 exp
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whereB0 is a constant that depends only onz. Now after the lens, in planeP1 we get,

u01(x;y) = u1(x;y)p(x;y)exp(ıΦ(x;y))

wherep(x;y) is thepupil functionof the lens, and

Φ(x;y) =�
κ
2 f

(x2+y2)

Now if we assume thatp(x;y) is much largerin extend thanfa(x;y), then we can ignore the
pupil function, so that

u01(x;y) = u1(x;y)exp
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Finally this amplitude distribution propagates a further distancef to planeP2, so we get

u2(α;β) = u01(α;β)�h(α;β; f )
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we can now substitute foru01(x;y) which cancels out one of the exponentials under the integral
to give,

u2(α;β) = B0 exp
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Now we have to make the final, and messy substitution foru1(x;y) to get:
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which we can write as:

u2(α;β) = B0 exp
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Look at the central integral of
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and we note that this is the Fourier Transform of a Parabolic Phase term, and we are able to
solve this. Note that this integral is separable in, so we need only consider the one-dimensional
case of: Z
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We now note that we have the identity that,
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then, after some manipulation, we get that the one-dimensional integral is
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whereC0 is a constant that depends only onz. So on Two-Dimensions the central integral
becomes
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Now if we substitute this back into the expression foru2, (expressed in terms ofx;y), we get,
after collection of terms, that
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So now if we take the special case ofz= f , so that the input slide is in thefront focal planeof
the lens, then the quadratic phase term in-front of the integral vanishes, and we get

u2(x;y) = D0
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which is just the scaled Fourier Transform offa(x;y), so that, (ignoring the constantD0), we
have that

u2(x;y) = F

�
x

λ f
;

y
λ f

�
as given in lectures.

Aside 1: We have ignored the pupil function of the lens, this has two effects,
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1. In convolves the Fourier Transform with the amplitude PSF of the lens.

2. It limits the size of the input object. It is actually worse than this.

If you but in these terms the algebra get even worse than it is already, anybody want a challenge.

Aside 2: There is an alternative derivation of this result in Goodman Chapter 4, where the
initial projection from planeP0 to P1 is considered to the a phase shift, but with no diffraction.
This gives the right result, but is not a very good physical model.

11.3 Optical Processing

An 4-f optical processing system with 500 mm focal length lenses is used de-stripe lunar pho-
tographs as shown in page 472 ofOpticsby Hecht. If the stripes periodic with spacing 0.3 mm
sketch the modulus of the Fourier transform of a typical slide and calculate the location of the
spots associated with the stripping.

Solution

The image is of type,

0.3 mm

So if we assume that the stripes are represented by the functions(x;y) and the underlying image
by f (x;y), then the input image is given by

g(x;y) = f (x;y) s(x;y)

So in Fourier space we get a convolution, so that

G(u;v) = F(u;v)�S(u;v)

whereS(u;v) is the Fourier Transform of the stripes,

F

Mathematically the strips can be written as

s(x;y) =
∞

∑
i=�∞

δ(y� i∆y)
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where the spacing is∆y. Noting that thisx variable is an effective constant, then from Ques-
tion 5 in theFourier Theorysection the Fourier transform is given by:

S(u;v) = δ(u)
∞

∑
i=�∞

δ
�

v�
i

∆y

�

so the theG(u;v) consists of a series of replications ofF(u;v) separated by a distance 1=∆y in
thev direction.

In an optical system, the Fourier transform is scaled by a factorλ f wheref is the focal length of
the lens. So forf = 500mm andλ = 633nm, then the separation of the spots will be 1:05mm.

11.4 Computer Optical Filtering

Experiment with the programoptical processing available on the CP laboratory machines
to simulate the optical processing of images using a range of filtersH(u;v). The programme is
located in:

wjh/mo4/examples/optical processing

and is supplied with a selection of images in the same directory. These images are taken as
the inputintensitytransmittance, from which the inputamplitudetransmittance is calculated by
taking the square root. You can view the initial images with

xv <imagefile>

The supplied images are:

toucan.pgm Image of Toucan
grating.pgm Horizontal grating
fringe.pgm Fringe pattern
fan.pgm Fan image used in defocus dems.

The program will ask you for:

1. Input image:

2. Filter Type:The options are:

lowpass Lowpass filter
highpass Highpass filter
bandpass Combination of low and high
guassianlow Gaussian lowpass
gaussianhigh Guassian highlass

3. The program will then perform the calculateion and display the outputintensityvia xv .

Note: To get sensible images after highpass filtering you may have to use the “Color Edit”
window in xv to modify the gamma of the output (try 3) which reduces the contrast.
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Solution

Here are some example using the (famous) toucan image,

Lowpass Highpass

Gaussian Lowpass Gaussian Highpass

where the thehighpassimages have need enhanced using the“Color Edit” facility in xv .

Points to note from these images:

1. The Lowpass filtered image is blurred due to removal of high spatial frequencies. It also
suffers from sever “ringing” due to convolution with a J1(r)=r shape function. This being
theF fH(u;v)g.

2. The Gaussian Lowpass image is also blurred due to removal of high spatial frequencies,
but does not suffer from “ringing” since in this caseF fH(u;v)g is a Gaussian which has
no secondary maximas.

3. The both Highpass filtered images show the expected “edge enhancement” due to re-
taining the high spatial frequencies at the expense of the low. Note again the Gaussian
highpass has less “ringing” at edges due to theF fH(u;v)g having no secondary maxi-
mas.

11.5 Computer Phase Filtering

Experiment with the programphase filtering available on the CP laboratory machines to
simulate the optical processing of images using a range of filtersH(u;v). The programme is
located in:

Department of Physics and Astronomy Revised: August 2000



wjh/mo4/examples/phase filtering

and is supplied with a selection of images in the same directory as listed above.

These images are used to make the “phase only” objects with a user specified maximum phase
depth. The resultant phase image is then reconstrcted under eitherDarkfieldof Zernike Phase
Contrastimaging and theintensityof the ouput image displayed usingxv .

The program will ask you for:

1. Input image:

2. Maxiumum phase depth in Wavelengths(try numbers in the range 0:1! 3.

3. The type of reconstruction. The options are

darkfield or zernike

4. The program will then perform the calculation and display the outputintensityvia xv .

Again you may have to use the “Color Edit” option to get clear images due to dynamic range
problems.

Note: while phase range is small things behave as “expected”. However for larger phase
ranges things start of go “very wrong” especially for the Zernike reconstructions. Details of
this are beyond this course.

Solution

Here are some example using the (famous) toucan image for forDarkfiledreconstructions.

0:1λ phase 0:5λ phase
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1λ phase 2λ

where the the some image have been enhanced“Color Edit” facility in xv to make them print-
able.

These results show that thedarkfieldreconstruction techniques give the expected edge dou-
bling and contrast reversal up to about 1λ of phase variation, but beyond this things start to go
severely “wrong”. This is actually a better range of phase thickness than would be expected.

The repeat forZernikereconstructions, is shown below,

0:1λ phase 0:5λ phase

1λ phase 2λ

where the the some image have been enhanced“Color Edit” facility in xv to make them print-
able.

Here the results are more surprising with

1. Very small phase (0:1λ) depth we get the “expected” perfect reconstruction with the
intensity proportional to the phase depth.

2. At medium phase (0:5λ) we start of see some edge enhancement effects, but still a rea-
sonable image.

3. At large phase (>1λ) we get images very similar to theDarkfieldcase with edge doubling
and contrast reversals.

This shown that theZernike Phase Contrastworks very well for small phase depth but some
very strange effects appears with phase depth of�> 0:5λ. This is as expected since the theory
is only valid forsmallphase depths.
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11.6 Expanding a laser beam
Optic

s

A collimated laser beam can be expanded into a diverging beam with a short focal length lens,
typically a microscope objective. However inperfections in the glass of the objective and dust
particles on the lenses result in additional high frequency patterns being superimposed on the
exmanding beam. Suggest a scheme for removing this high fequency patterns to give a clean
expanding beam.

Solution

The basic system is a collimated beam passing through a convex lens as follows:

Input beam

Microscope
Objective

Distorted output

Fourier Plane

This is the same system considered in question 11.1, where if the input beam has a Gaussian
amplitude profile withe�1 point atr0, then is the back focal plane (also Fourier Plane) of the
objective the amplitude distributionshouldbe a Guassian withe�1 point atp0 where

p0 =
f λ
πr0

where f is the focal length of the objective.

The distrortions, inperfections and dust in the objective results in diffraction in the lens that
scatters light into high spatial frequencies in the Fourier plane. It is these higher spatial fre-
quencies we want to remove with a filter placed in the Fourier plane.

A Guassian beam has 92% of its energy within a radius given by thee�2 intensity radius (which
is a also thee�1 amplitude radius). So we want to match the filter size of thep0 radius in the
Fourier plane. So we want a filter

H(x;y) = 1 for x2+y2� p2
0

= 0 else

so just a “hole” or radiusp0.

This look easy until you start looking at the numbers. For example for the laser and microscope
objective detailed in 11.1 the “hole” must be approximately 4µm in diameters (1=10th thick-
ness of a human hair!). In practice making the pin-hole is (fairly) easy, this is done by high
voltage sparks striking a very thin copper or nickle sheet. Depending on the voltage and film
thickness this results in holes of various sizes from� 50µm down to about� 1µm. These can
be purchased from any optical equipment supplier at fairly “modest” cost. The difficult part is
that these pin-holes most be positionedvery accuratelyin the Fourier plane, typically with a
(x;y) accuracy of better than 0:5µm and az accuracy of better than 2µm. This requires very
accurate mechanical positioners in very stable metal mounts. These are very expensive, heavy
and delicate.
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Typical system range from the “low cost” system from Ealing Electroptics which contains a
4 mm focal length lens at 5µm pinhole at a modest £800 (these are used in the P4 optics
labortoratoy), to a “top-of-the-range” automatic system with three piezzo stages and feedback
system to optimise the amount of light passed costing rather more than a small Merceedes!

11.7 Fourier Holograms

Explain the use of off-axis Fourier holograms in optical correlator system, and derive an expres-
sion for thethree term in the output plane of the system with an inputg(x;y) and a hologram
recordingF(u;v) with a carrier frequency at angleθ.

Calculate the maximum size of input field to prevent overlapping occurring in the output.

Hint: to do this properly is rather difficult since you must consider the extent of the input,
correlated with the extent of the object encoded in the Fourier hologram.

Solution

Consider a Fourier plane hologram formed from a slide of amplitude transmissionfa(x;y) with
a reference beam at angleθ as shown below.

f  (x,y)a

θ

f f

r

F(u,v)

If the input slide is one focal length infront of the lens, then in the back focal plane the amplitude
distribution will be the scaled Fourier Transform offa(x;y) given by

u2(x;y) = F

�
x

λ f
;

y
λ f

�

If the reference beam has amplituder, then if the two beams are coherent, theintensityin the
back focal plane is

jr exp(ıκxsinθ)+u2(x;y)j
2

so if we writeu2(x;y) = ju2(x;y)jexp(ıφ), we get the intensity to be:

r2+ ju2j
2+2rju2(x;y)jcos(κxsinθ�φ)

which encodes thecomplex u2(x;y) as high frequency fringes, so is a hologram then encodes
F(u;v) the Fourier Transform of the inputfa(x;y).

In this caseju2j
2 is definitely nota constant, since it is the squared modules of the Fourier

Transform offa(x;y) and it highly peaked about(0;0), so we have to write the intensity as

h0+h(x;y)+δh(x;y)

whereh0 = r2, h(x;y) = ju2(x;y)j2 andδh(x;y= 2rju2(x;y)jcos(κxsinθ�φ).
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If we expose a holographic plate in this plane, develop it, then its amplitude transmittance will
be

Ta = K (h0+h(x;y)+δh(x;y))�γ=2

which again we can write as:

Ta = Kg�γ=2
0

�
1+ ĥ(x;y)+δĥ(x;y)

��γ=2

whereĥ(x;y) = h(x;y)=h0 andδĥ(x;y) = δh(x;y)=h0. Now expanding this tofirst order we get
that: �

1+ ĥ(x;y)+δĥ(x;y)
��γ=2

� 1�
γ
2

�
ĥ(x;y)+δĥ(x;y)

�
so we can then write

Ta = T0�aĥ(x;y)�aδĥ(x;y)

wereT0 anda as as given in the slide 7 of the lecture on holography.

If we now place this hologram in the in the optical system below,

f f

g  (x,y)a
G(u,v)

Ta

G(u,v) T a

with a secondamplitude slidega(x;y) in the front focal plane of the lens. In the back focal
plane we get

v2(x;y) = G

�
x

λ f
;

y
λ f

�
so the amplitude transmitted through the hologram is

v2(x;y)Ta = v2(x;y)T0�va(x;y)aĥ(x;y)�vaaδĥ(x;y)

which we can now write in term ofF(u;v) andG(u;v) to give, noting thatx= λ f u,

T0 G(u;v)�aG(u;v) jF(u;vj2

�aG(u;v)2rjF(u;v)j12 (exp(ı2π f usinθ�φ(u;v))+exp(�ı2π f usinθ+φ(u;v)))

We can then writeF(u;v) = jF(u;v)exp(φ(u;v)) to get:

T0 G(u;v)�aG(u;v) jF(u;vj2

�aG(u;v)F�(u;v)exp(ı2π f usinθ)
�aG(u;v)F(u;v)exp(�ı2π f usinθ)

Now let this amplitude distribution fall on a second lens, again one focal length from the holo-
gram as shown below:

f f

g  (x,y)a
G(u,v)

Ta

f f

G(u,v) F(u,v)

G(u,v) F  (u,v)* g(x,y) o f(x,y)

g(x,y) o f(x,y)
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Then in the back focal plane of this lens we will form the scaled Fourier Transform of the above
amplitude transmission.

As with conventional holography we will get three parts to the reconstruction. If we assume a
reversal of coordinates in the output plane we the first term will be, from the correlation and
convolution results,

T0 ga(x;y)+aga(x;y)� fa(x;y)
 fa(x;y)

which is not useful.

The second term is
�aga(x;y)
 fa(x;y)�δ(x+ f sinθ)

which is thecorrelationof fa andga located about� f sinθ, which is typically the term we
want.

Similarly the third term becomes:

�aga(x;y)� fa(x;y)�δ(x� f sinθ)

which is theconvolutionof fa andga located aboutf sinθ, which is useful, but typically not
used.

If θ is large enough, then these three terms will be separated, and we can isolate thega(x;y)

fa(x;y) that we want. Note: we will actually detectjga(x;y)
 fa(x;yj2, but provided that both
fa(x;y) andga(x;y) are both real and positive (they are simple amplitude transmissions), then
thej j2 does not present any problems.
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