
Making PDF files from LATEX

There are several schemes for producing PDF output from LATEX, each having their own merits
(and problems).

The main issues are fonts, which will scale correctly when viewed on screens and graphics
support.

1 Using pdflatex

The simplest scheme is to process the source LATEX file with pdflatex, which directly pro-
duces a PDF file with sensible and reasonable font selection which work equally well with text
and equations. The main problem is with graphics, in particular only PDF graphics files are
supported.

To include PDF graphics, the simplest scheme is to use the graphicx package, with

\usepackage{graphicx}

and them use \includegraphics to include the graphics, for example

\begin{center}
\includegraphics[height=60mm]{GraphicsFile.pdf}

\end{center}

will centre the graphics file GraphicsFile.pdf scaled to 60 mm in height.

Note this scheme does not work latex or pslatex. Also pdflatex does not generate a dvi
file, so the results cannot be viewed with xdvi, or processed with dvips etc.

2 Using dvipdf

The next alternative is to make a suitable dvi file and then convert it into pdf. The problem
here is fonts, in particular the default bit-mapped crm fonts in LATEX do not work well and result
in pdf files that do not display well on the screen. The solution is to use pslatex which runs
LATEX but using scalable POSTSCRIPT fonts.

The route is now:

pslatex file
dvipdf file

will generate file.pdf using scalable POSTSCRIPT fonts.

This route works with included POSTSCRIPT graphics using the normal epsfig or graphicx
packages, and produces good pdf files that work well both on-screen and printed.

The known problems are:

1



1. The scalable POSTSCRIPT fonts are not as prefect at the native LATEX fonts in complex
equations, and some equations need some manual spacing to make them look nice.

2. In equations, v ($v$) and ν ($\nu$) are very similar.

3. Some, fairly exotic, characters are missing for example bold capital Greek fails, should
be $\bf\Psi$. You will get an warning message about missing glyph.

This scheme used absolutely standard tex files that can be processed using latex and also
generated standard dvi files that can be viewed using xdvi.

3 Using dvips

The final and most “long winded” scheme is to make a suitable dvi file, then convert to
POSTSCRIPT and then finally convert to pdf. This is identical to dvipdf but allows you to
pre-processing the POSTSCRIPT for example to generate “2-up” format with psnup. As above
you must use pslatex to make the dvi file to force the use of the POSTSCRIPT scalable fonts.

The simples route is now

pslatex file
dvips -f file | ps2pdf - file.pdf

which uses dvips as a “filter”, and piped this to ps2pdf. Note carefully the syntax of ps2pdf
the - must have a space on either side.

Once the file is pslatexed then you can then pre-process the POSTSCRIPT file between the
dvips and ps2pdf stages, for example

dvips -f overheads | psnup -4 | ps2pdf - overheads.pdf

will produce a output pdf file in “4-up” format.

Again since we are initially using pslatex it works with totally standard LATEX files and
POSTSCRIPT graphics, however it does not fix the font problems 1 � 3 noted above.

Summary

Clearly there is no “ideal” scheme, my best advice is:

1. Complex mathematics and few/no diagrams, use scheme 1), but remember you will have
to convert / save any diagrams as pdf before you start.

2. Large number of POSTSCRIPT diagrams, use scheme 2), purists will want to edit some
formula, and watch out for black squares.

3. If 2) fails or want to do multi-page, then use 3), but watch out for the same font problems
as 2).

Will Hossack
May 13, 2005

2


