
3. Thermostats in Molecular dynamics

In these notes we briefly recap the velocity Verlet algorithm, and we discuss
how this can be modified to sample the NV T ensemble (where the temperature
T is fixed, together with the number of particle N and the volume of the simula-
tion box V ), instead of the NV E ensemble (where it is the total energy E which
is constant, together with N and V ). The NV T ensemble is relevant when the
system of interest is in contact with a heat bath (this is the common situation in
physics). Note that the NV E and NV T ensembles are also known as, respec-
tively, the microcanonical and the canonical ensemble. The latter is familiar to
us from the Monte-Carlo algorithm, which samples a system in thermodynamic
equilibrium in this ensemble, where the weight of a microscopic state is given
by its Boltzmann weight exp[−E/(kBT )].

1.1. The velocity Verlet algorithm

We begin by briefly recapping the velocity Verlet algorithm, which allows
us to integrate the Newton equations of motion, characteristic of the NV E
ensemble, namely

mi
d2ri
dt2

= −
∑
j 6=i

∇iU(|ri − rj |). (1)

In Eq. 1 mi is the mass of particle i, ri = (xi, yi, zi) is the position of particle
i in 3-dimensional space, ∇i = ( ∂

∂xi
, ∂
∂yi

, ∂
∂zi

), while U denotes the potential
energy.

The most used algorithm used in practice to integrate Eq. 1 is the velocity
Verlet algorithm, whose steps are implemented as follows:

ri(t+ δt) = ri(t) + vi(t)δt+
fi(t)
2mi

δt2 (2)

vi(t+ δt/2) = vi(t) +
δt

2
fi(t)
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fi(t+ δt) = fi(ri(t+ δt))

vi(t+ δt) = vi(t+ δt/2) +
δt

2
fi(t+ δt)

mi

where ri, vi and fi denote the position of the i−th particle, its velocity, and
the force it is subjected to. As there are no dissipative forces, the energy is
conserved within this algorithm.

In practice, the following, equivalent, version of the velocity Verlet is proba-
bly the most used: The most used algorithm used in practice to integrate Eq. 1
is the velocity Verlet algorithm, whose steps are implemented as follows:

vi(t+ δt/2) = vi(t) +
δt

2
fi(t)
mi

(3)

ri(t+ δt) = ri(t) + vi(t+ δt/2)δt
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fi(t+ δt) = fi(ri(t+ δt))

vi(t+ δt) = vi(t+ δt/2) +
δt

2
fi(t+ δt)

mi
.

As a simple exercise, you should convince yourself that the two versions in Eq. 2
and Eq. 3 are equivalent.

1.2. The Nose-Hoover thermostat

The Nose-Hoover thermostat provides a way to simulate a system which
is (asymptotically, i.e. at large times) in the NV T ensemble. The idea is
to introduce a fictitious dynamical variable, whose physical meaning is that
of a friction, ζ, which slows down or accelerates particles until the temperature
(measured through the kinetic energy and the equipartition function, see below)
is equal to the desired value. The equations of motions (in 3D) are:

mi
d2ri
dt2

= fi − ζmivi (4)

dζ(t)
dt

=
1
Q

[
N∑
i=1

mi
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2
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2
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]
, (5)

where Q in Eq. 5 determines the relaxation of the dynamics of the friction,
ζ(t), while T denotes the target temperature. It can be seen that in steady
state, where dζ

dt = 0, the kinetic energy is given by 3
2 (N + 1)kBT as required

by equipartition (there is a factor of 3N + 1 instead of 3N as there is one more
degree of freedom, ζ). It is important to note that the temperature is therefore
not fixed, rather it tends to the target value.

The equations of motion of the Nose-Hoover thermostat can be implemented
by a small modification of the velocity Verlet algorithm – an option is given
below.

The first four steps in the modified discretisation algorithm are:

ri(t+ δt) = ri(t) + vi(t)δt+
(

fi(t)
mi
− ζ(t)vi(t)

)
δt2

2
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δt
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)
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To match the two-step character of the velocity Verlet algorithm, note that also
ζ(t) is first updated at time t+ δt/2. The final steps of the Nose-Hoover-Verlet
algorithm are:

ζ(t+ δt) = ζ(t+ δt/2) +
δt

2Q

[
N∑
i=1

mi
vi(t+ δt/2)2

2
− 3N + 1

2
kBT

]
(7)

2



vi(t+ δt) =

[
vi(t+ δt/2) + δt

2
fi(t+δt)
mi

]
1 + δt

2 ζ(t+ δt)

where the last equation is slightly more complicated than its counterpart in the
NV E velocity Verlet algorithm, because the dissipative force over mass term,
ζv, is computed at time t+ δt.

1.3. Brownian dynamics: a stochastic thermostat

Another option to simulate a system in the NV T ensemble is to use a
stochastic thermostat, as opposed to the deterministic thermostat defined through
the Nose-Hoover equations, Eqs. 4–5. This thermostat again requires the in-
troduction of dissipative forces, through friction, which physically comes from
fluctuating forces on a moving particle due to the chaotic motion of solvent
molecules. For the system of equations to be physically meaningful, we also
need to include a stochastic term to account for such fluctuating forces.

The presence of a stochastic force term renders this thermostat more com-
plicated from a theoretical point of view. However, it is also one of the most
commonly employed in practice, because of its very good performance. One of
the reasons why this thermostat works so well is that, in this case, the friction
is a real, physical parameter (incidentally, this means that it is now constant,
and does not evolve as in the Nose-Hoover thermostat). The equations of mo-
tion of a system with a stochastic thermostat are known as Brownian dynamic
equations, and for particle i (in 3D) these are:

mi
d2ri
dt2

= fi − ζmivi +
√

2kBTζmhi (8)

〈hi〉 = 0

〈hi(t) · hj(t′)〉 = 3δijδ(t− t′),

where in the last equation δij denotes a Kronecker delta, while δ(t − t′) de-
notes a Dirac delta. Note that in Eq. 8 the stochastic term hi has a coefficient,√

2kBTζmi, which contains the friction, ζ. This relation is a consequence of
the so-called “fluctuation-dissipation theorem”, which relates fluctuation-related
quantities (such as diffusion coefficient, or noise strength) to dissipative quan-
tities (such as friction). Another consequence of the fluctuation-dissipation
theorem is that the diffusion coefficient of a particle in a solvent is given by
D = kBT/(miζ) – a relation which only holds when the dissipative and stochas-
tic forces have exactly the form in Eq. 8. (The proof of this requires a bit more
knowledge of statistical physics and in particular of the Langevin equation: we
do not give it here.) Finally, note that the noise term hi is assumed to be
Gaussian, so that it is uniquely determined by its first two moments (given in
Eq. 8).

Finally, we give explicitly here a modified (velocity) Verlet algorithm which
uses Brownian dynamics as a thermostat. The simplest way to do this is to
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define a total force as follows:

f tot
i (t) = fi(t)− ζmvi(t) +

√
2kBTζm

δt
h̃i(t) (9)

〈h̃i(t)〉 = 0

〈h̃i,αh̃i,β(t)〉 = δαβ .

In the equations above, α and β denote Cartesian components (x, y or z in
3D), and, importantly, h̃i is now a standard vector, each component of which
are Gaussian random variable with mean zero and variance 1 (as opposed to a
Dirac delta, which is difficult to discretise). Note that the stochastic term has
been scaled by 1√

δt
, where δt is the time step – this is dimensionally sensible

(as δ(t − t′) has the dimension of an inverse time) – the deep reason behind
this choice however requires, once more, a bit more work, and we leave it out.
Once the continuum noise hi has been replaced by h̃i√

dt
, it is a simple matter to

generate this noise through standard random number generator (as all we need
is a random number generated according to a Gaussian probability distribution).

Once the force is defined in such a way, we can include it in an implementa-
tion of the velocity Verlet algorithm. Here we give the discretisation used in the
code LAMMPS (an acronym which stands for Large-scale Atomic/Molecular
Massively Parallel Simulator), which is a very well known molecular dynamics
code. The relevant discretised formulas are,

vi(t+ δt/2) = vi(t)−
δt

2

(
∇iU(t)
mi

+ ζvi(t)
)

+
√
δtkBTζ

mi
h̃i (10)

ri(t+ δt) = ri(t) + vi(t+ δt/2)δt

vi(t+ δt) = vi(t+ δt/2)− δt

2

(
∇iU(t+ δt)

mi
+ ζvi(t+ δt/2)

)
+
√
δtkBTζ

mi
h̃i,

where you should note that due to the Verlet scheme the time step in each of
the two velocity updates is now δt/2, rather than δt. You should also recall
that h̃i is a random vector, each components of which have zero mean and unit
variance: a different random vector should be generated, for each particle, for
each velocity update.
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