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Course Layout (15 lectures á ~50 minutes) 
 Digital Electronics (3 lectures) 
 Analogue Electronics – linear (6 lectures) 
 Analogue Electronics – non-linear (4 lectures) 
 Analogue meets Digital (1 lecture) 
 Digital Signal Processing – using LabVIEW (1 lecture) 
 
Text Books (for occasional consultation in the library) 
 The Art of Electronics 

P. Horowitz & W. Hill (CUP, New York, 1989)  TK7815 Hor.   
 Student Manual for the Art of Electronics 

T.C. Hayes & P. Horowitz (CUP, New York, 1989)  NLS: SPR3.89.534  
 
Course Structure 

period 1: Mon 17.09. - Fri 19.10. (5 weeks: 15 lectures, 5 lab sessions) 
period 2: Mon 22.10. - Fri 02.11. (2 weeks: design exercise part 1) 
period 3: Mon 05.11. - Fri 23.11. (3 weeks: 3 lab sessions) 
period 4: Mon 26.11. - Fri 07.12. (2 weeks: design exercise part 2) 

 
Lectures – period 1 
 Monday, Thursday, Friday    14:00 

Location: JCMB – LTC 
 
Laboratory – period 1 & 3 (each student attends one tutored session per week) 
 seat limit: 20 students per session 

Tutored sessions:     period 1  period 3 
Monday, Tuesday, Thursday Friday        15:00–17:00  14:00-17:00 
Location: JCMB - Lab 3301 
weight: 60% of total assessment of course 

 
Untutored lab access: 

Further lab access is possible, but without tutoring: 
Tuesdays: 09:00-14:00 
Wednesdays: 14:00-17:00 
Thursdays: 09:00-14:00 

 
Design Exercise: (a number of design problems) 
 Issue of first sheet: week 5 (to be worked on in period 2) 

Issue of second sheet: week 9 (to be worked on in period 4) 
submit solutions by 07.12.2011: 17:00 

 weight: 40% of total assessment of course 
(Design Exercise 3 can be solved either using  Labview or JAVA, using skills from 
Computational Physics course) 

Website 
Lecture notes and design exercises and further teaching material becomes available 
from: http://www2.ph.ed.ac.uk/~eisenhar/teaching/courses.shtml  

http://www2.ph.ed.ac.uk/~eisenhar/teaching/courses.shtml
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Digital Electronics 1: Binary numbers & combinational logic 
 
The course begins with digital electronics because we find that the digital circuits are easier 
for students to build in the lab.  We will progress onto analogue electronics next week and 
then finish the course with converting analogue signals into digital signals. 
 
 
Analogue versus digital: (H&H 8.02 p.472) 
The world’s representation turns increasingly digital. Since microchips began to appear in the 
1960s digital electronics has been playing a larger and larger part in people’s lives. With the 
advent of the CD in the (fabulous) 1980s, first sound went digital, followed by still images and 
finally video; at the start of the 21st century, digital memory chips are the most used media 
(e.g. in MP3-players, USB-keys, mobile phones and digital cameras).  
 
Digital technology stores information in discrete values, represented by binary states. 
Example pairs of binary states are:  
 in Boolean Logic:    True / False 
 in Binary Numbers:     1 / 0 
 represented as Voltages or Currents: High / Low   (or Low / High!) 
 in Gene activation patterns:   activator / repressor 
One binary value is called a binary digit or bit. Storing information as bits has significant 
advantages, for suppressing noise and for subsequent processing. The disadvantage is a loss of 
subtlety. Digital information: 

• yields a smaller dynamic range than analogue signals, 
  this is constrained by the size of one bit 

• is ideal for counting / integer data 
• is more robust than analogue information and can be transmitted without signal loss, 

only the “1” and “0” states have to be recognized, analogue noise and dispersion 
can be effectively suppressed 

• needs smaller bandwidth for transmission of analogue-to-digital converted data 
• and allows logic combination of signals and makes computers possible: 

  digital signals are intimately tied to the way computers work. 
 
For a physicist, digital electronics is important in processing signals on all scales – from a 
single parameter temperature sensor in the table-top setup to a 10-million channel particle 
detector at the Large Hadron Collider. Digital electronics allows to trigger (i.e. to react with a 
defined delay in time) on the occurrence of pre-defined signal conditions. E.g. the observation 
of a signal corresponding to the presence of a muon can be registered as a “1”. Two “1”s 
recorded simultaneously in different detectors can be used in coincidence counting. 
 
Physicists employ computers to process and analyse large amounts of data at increasing 
speed. For that the readings of analogue sensors first have to be converted into binary form in 
a digitization procedure, introducing an additional loss of fidelity on top of the analogue 
noise. Any sensory readout can be converted into digital values, and these days is done so 
basically everywhere by default, e.g. astronomic and medical imaging, remote sensing, any 
form of recording from microscopy (whether light/ electron/ atomic force), take your pick ... 
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Digital signals: 
Anything to which there is a yes/no answer can be very easily represented in binary form. 
The assignment of the meaning of these states is by convention, i.e. can be freely defined.  
 
Any more complex information, e.g. rational numbers, is less straight forward to represent in 
digital form. Using various conventional notations, sequences of binary states (binary 
numbers) can be used to represent such information. The length of the bit sequence 
determines the precision and range of the representation. E.g. to represent a floating point 
(rational) number, a single (16-bit), double (32-bit) or long (64-bit) word of bits can be used. 
Once numbers, or other data, have been represented in binary code they can be manipulated 
using Boolean logic (AND, NOT, OR).  
 
 
Number Codes: (H&H 8.03 p.473) 
To get a flavour for the issues involved we will revise the method to convert between base 10 
(decimal) and base 2 (binary) unsigned integer numbers. We then will think about the best 
way to code a minus sign to represent signed integer numbers. 
More complex codes, e.g. for floating point numbers, can be found in the literature. 
 
A base 10 integer number is made up of units, tens, hundreds etc. We need to be able to 
convert this into a base 2 number made up of units, twos, fours, etc. Let’s use the example 
decimal number: 21310 = 2 × 102 + 1 × 101 + 3 × 100  
 
The conversion to binary is carried out by repeatedly dividing the decimal number by 2. When 
only using integer numbers, after each division there is a remainder ‘r’ which is either a “1” or 
a “0”. The series of remainders makes up the binary representation of the number, starting 
with the smallest digit. 
 
Decimal to Binary – example conversion 

 
213 / 2 = 106  r                   1 
106 / 2 =   53  r                 0 
   53 / 2 =   26  r             1 
   26 / 2 =   13  r           0 
   13 / 2 =     6  r         1 
     6 / 2 =     3  r       0 
     3 / 2 =     1  r    1 
     1 / 2 =     0  r  1 
 
21310    =              110101012 

 
The opposite direction, the binary to digital conversion, can be carried out by adding up the 
units, twos, fours etc. that make up the number. 
 
Binary to Digital – example conversion 
 

1012 = 1 × 22 + 0 × 21 + 1 × 20  
   =    4       +    0       +    1     = 510  
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How can you represent a minus sign? 
An obvious approach would be to dedicate one bit of the binary number, e.g. its most 
significant bit (MSB), to indicate its sign, like we do in writing. This is called sign magnitude 
representation and is regularly used to represent floating point numbers (coded as sign-
exponent-mantissa). But computational handling of integers in this approach is awkward: 
binary addition and subtraction would need different procedures and the sign bits extra 
treatment, there also would be two zeros “+0” and “-0”. There are more efficient solutions, 
allowing for much simpler circuits to perform basic operations. 
 
The first step in the right direction to compute with signed integers is the offset binary 
representation. Here one subtracts the half the maximal numbers which could be presented as 
unsigned integer. With this the binary number sequence increments continuously from the 
most negative to the most positive number, the MSB indicates the sign and the problem with 
the two zeros is gone. This works well with A/D and D/A conversions. 
 
But signed integer computation becomes easy once in addition the MSB gets inverted. Then 
positive numbers are represented again as simple unsigned binaries. And a positive number 
can be turned negative by first complementing each bit of the number (“1’s complement”) and 
then adding a binary 1 (“2’s complement”), hence the name 2’s complement representation. 
In this representation binary adding a positive number and its negative counterpart of the 
same value yields zero, with zero been represented by “0” bits only. Binary addition, binary 
subtraction (i.e. adding the 2’s complement of the subtrahend) and binary multiplication yield 
in this representation the correct numerical results, using circuitry designed for positive 
integers alone! 
 
See the following table for the relation of the three representations. But here we will not take 
this topic further. 
   sign-  offset- 
 Integer magnitude binary  2’s complement 
 +7  0111  1111  0111 
 +6  0110  1110  0110 
 +5  0101  1101  0101 
 +4  0100  1100  0100 
 +3  0011  1011  0011 

+2  0010  1010  0010 
+1  0001  1001  0001 
   0  0000  1000  0000 
 -1  1001  0111  1111 
 -2  1010  0110  1110 
 -3  1011  0101  1101 
 -4  1100  0100  1100 
 -5  1101  0011  1011 
 -6  1110  0010  1010 
 -7  1111  0001  1001 
 -8       -  0000  1000 
(-0)  1000       -       - 
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Combinational logic: (H&H 8.04 p.478) 
So we can record any data (logic states, decimal numbers, etc) in binary states, in form of “1”s 
and “0”s – now we want to manipulate them. This is typically carried out using digital 
circuitry, called logic gates. You will be building electronic circuits using logic gates in the lab. 
 
The binary states are combined and manipulated using Boolean Logic, using operations like 
NOT, AND, NAND, OR, XOR and NOR. Each of these operations is available as a distinct logic 
gate, typically implemented in integrated circuit chips. Using these as building blocks one 
can put together the circuitry to implement any logic algorithm, for example, one to add 
binary numbers. 
 
The subset of logic gates {AND, OR, NOT} is called the fundamental logic functions. All other 
logic circuits can be built using only these three logic functions. 
 
The logic gates NAND and NOR are called universal logic functions. It is possible to 
implement every other logic function just using NAND gates – and the same holds for NOR 
gates. Theoretically an entire PC CPU could be built from just NAND gates (or NOR gates), 
practically this is not very efficient. 
In the lab you are provided with NAND gates (and NOT gates, to ease some tasks). 
 
Logic gates: 
Each logic gate has one or more inputs and exactly one output and is represented by a specific 
symbol. We use the convention to label the input wires A, B, C, etc, and the output wire Q. The 
logic function of the gate is defined in the truth table, where the output Q is defined for all 
possible combinations of inputs. 
Below, for the fundamental and universal logic gates, you find: the name, the way they are 
written as an arithmetic operation, the conventional symbol and the truth table. 
 
AND  (A.B) 

 
 
OR (A + B) 

 
 
NOT A’ 

  

A B Q 
0 0 0 
0 1 0 
1 0 0 
1 1 1 

A B Q 
0 0 0 
0 1 1 
1 0 1 
1 1 1 

A Q 
0 1 
1 0 

A Q 

A 
Q 

B 

A Q 

B 
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NAND  (A.B)’ 
 

 
 
NOR (A + B)’ 
 

 
 
 
  

A B Q 
0 0 1 
0 1 1 
1 0 1 
1 1 0 

A B Q 
0 0 1 
0 1 0 
1 0 0 
1 1 0 

A Q 

B 

A Q 

B 



Lecture 1, 17th September 2012 

Electronic Methods, Semester 1 

 
Boolean arithmetic: (H&H 8.12 p.491) 
The arithmetic operation associated with each gate (for example A.B is AND) can be used to 
simplify logical problems. Typically, if you understand the problem that you are trying to 
solve then you can write it in the form of a truth table. 
 
Truth tables codify statements such as “if the fridge door is shut the light should be off”. In this 
example you can choose to define the states as follows:  A(door open) = 0 and Q(light on) =0. 
Note that this assignment of states may feel unnatural to you in the first instance. But it has 
the benefit of an easy mathematical expression (Q = A) and you may want to use a hardware 
implementation of the logic where the state “1” is the low power state, like in emitter coupled 
logic (ECL), to save power over the extended times where the fridge door is closed. The truth 
table in this example looks like: 
 
 
 
 
This truth table is that of a source follower, which is regularly used in line drivers to transmit 
signals over longer distances or to match impedances between two different parts of a circuit. 
But that already leads into the inherent analogue nature of even digital electronics and we will 
return to that at a later stage. 
 
Once you have codified your problem using logic statements the code may look rather 
complex. Often it can be simplified using Boolean arithmetic, specifically by using Boolean 
identities, which can be used like standard mathematical identities in arithmetic. For your 
reference you find a useful subset tabled below.  
 

 
OR function 

 
0+A = A 
1+A = 1 
A+A = A 
A+A’ = 1 

 

 
AND function 

 
0.A = 0 
1.A = A 
A.A = A 
A.A’ = 0 

 

 
NOT function 

 
(A’)’ = A 

 
 
 
 

Association 
 

A+(B+C) = (A+B)+C 
A.(B.C)   =   (A.B).C 

Commutation 
 

A+B = B+A 
A.B  =  B.A 

Distribution 
 

A.(B+C) = A.B+A.C 
(A+B).(A+C) = A+B.C 

Absorption 
 

A+A.B    = A 
A.(A+B) = A 

De Morgan’s Theorems 
 

(A+B)’ = A’.B’ 
(A.B)’ = A’+B’ 

 
We are going to go now through some examples of logic design where we apply the 
introduced elements. 
 

A Q 
0 0 
1 1 
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Logic Design: 
The elements needed to solve a logic problem were sketched above. Generally, you should 
succeed if you follow this sequence of steps: 
 

1. Create a truth table which matched your needs 
2. Write down the logical expression that describes the truth table*, possibly simplify 

using Boolean algebra 
3. Draw the circuit in terms of the fundamental logic gates 

 
*Alternatively one can employ the method of Karnaugh maps (H&H 8.13 p.492) to find the 
logic expression for problems with up to four input variables. 
 
Example 1 – Create an NXOR gate  
A NXOR gate is a negated, exclusive OR gate. An exclusive OR (XOR) gives an output Q=1 if 
exactly one of the inputs is 1. Negating that means an output of Q=1 if both of the inputs are 
the same. 
 1. Create a truth table: 
  
  
  
  
 

2. Write down the logical expression: 
• There are two rows (1 & 4) in the truth table with Q=1 
• We can test for row 4 by saying: Q = A.B (meaning Q=1 if A=B=1) 
• Row 1 is the opposite of this, hence: Q=A’.B’ (meaning Q=1 if A=B=0) 
• These two conditions can be combined via an OR gate to collect all Q=1 cases: 

Q = A.B + A’.B’ 
This is the arithmetic expression which describes the truth table. 

  
3. Draw circuit in terms of fundamental gates: 

 
• We have two conditions that are combined by an OR gate, which is the final 

element of the circuit. 
• The first condition (Q=A.B) is implemented in the top AND gate and feeds into 

the top input of the OR gate. 
• The second condition (Q=A’.B’) employs two NOT gates to first complement the 

inputs before a second AND gate tests for the condition. The result is feed into 
the second input of the OR gate.   

A B Q 
0 0 1 
0 1 0 
1 0 0 
1 1 1 

A 
B 

A.B 

A’.B’ 

A’ 

B’ 

A.B + A’.B’ 
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Example 2 – Create a greater-than circuit for 2-bit numbers (A > B) 
Design a circuit which compares the sizes of two 2-bit numbers A and B and outputs Z=1 if A 
is larger than B. The numbers A and B consist of the bits A1, A0 and B1, B0, respectively. 
 

1. Create a truth table: 
We are comparing two numbers between 0 and 3. The truth table covering all possible 
comparisons has 16 entries. We need two columns to represent each of the two inputs. 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

It is more compact, and also more useful, to display the truth table a different way. 
Since we want to compare all possible values of A with all possible values of B we can 
put them at the edges of a grid and then write the output values in the grid spaces: 
 

 
 
 
 
 
 
 
 
 

This arrangement makes it easier to see groups of “1”s and hence to determine a 
logical expression for this operation. 

 
2. Write down the logical expression: 
The input conditions giving an output of 1 can be grouped.  

• The four “1”s in the shape of a square in the lower left hand corner can all be 
described in one go: if the most significant bit of A is 1 (A1=1) and the most 
significant bit of B is 0 (B1=0) then the output is 1. This gives: 

Z = A1.B1’  
• The two remaining “1”s can also be grouped: these are the cases where the most 

significant bit of A and B are the same (A1=B1) and the least significant bit of A 
is 1 (A0=1) while the least significant bit of B is 0 (B0=0). This gives: 

Z = (A1.B1 + A1’.B1’).(A0.B0’) 

A1 A0 B1 B0 Z 
0 0 0 0 0 
0 1 0 0 1 
1 0 0 0 1 
1 1 0 0 1 
0 0 0 1 0 
0 1 0 1 0 
1 0 0 1 1 
1 1 0 1 1 
0 0 1 0 0 
0 1 1 0 0 
1 0 1 0 0 
1 1 1 0 1 
0 0 1 1 0 
0 1 1 1 0 
1 0 1 1 0 
1 1 1 1 0 

A1A0\B1B0 00 01 10 11 

00 0 0 0 0 

01 1 0 0 0 

10 1 1 0 0 

11 1 1 1 0 



Lecture 1, 17th September 2012 

Electronic Methods, Semester 1 

 
• As with example 1 these two conditions can be combined via an OR gate: 

   Z =(A1.B1’) + (A1.B1+A1’.B1’).(A0.B0’) 
• This is now quite a long expression which would require 5 AND gates, 4 NOT 

gates and 2 OR gate to implement. Can it be implemented with fewer than 11 
gates? 

• If you look at the table of Boolean identities above you will find De Morgan’s 
theorem, i.e. that: 

(A1’.B1’) = (A1 + B1)’ 
• We can use it to reduce the number of gates by one: 

   Z =(A1.B1’) + (A1.B1+(A1+B1)’).(A0.B0’)  
 

3. Draw circuit in terms of fundamental gates: 
We need four inputs for two-bits from two numbers and one output. The circuit looks 
like this: 

 

 
 

• We have two conditions to a final OR in this circuitry. 
• The first condition is shown in the top section where A1 and B1, via a NOT gate, 

are evaluated in an AND – this represents the first term in the expression. 
• The bottom section compares A0 and B0 in the equivalent way – this represents 

the last term of the expression, i.e. the second term to the AND which 
determines the outcome of the second condition to the final OR. 

• The middle section – notice the NOR gate, saving one more node – is where the 
evaluation of A1 and B1 is performed which we simplified using the De 
Morgan’s theorem. 

 
 
 
Having worked through these concepts and examples you are now supposed to understand 
how to put together logic gates to solve basic problems with binary numbers. 
 
  

A1 
B1 

A0 
B0 
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Working the technicalities in the lab… 
Very soon you are going to be building some logic circuits in the lab. A key question will be: 
what is “1” and what is “0”? Over the decades, as the technology of integrated circuits and the 
demands to it evolved, several different standards have been defined. In the lab we use the 
Transistor-Transistor Logic (TTL) convention – the oldest and most robust standard, still 
widely in use. Other commonly used conventions are: the Nuclear Instruments and Methods 
(NIM), Emitter Coupled Logic (ECL), Complementary Metal Oxide Semiconductor (CMOS) and 
Low Voltage Differential Signal (LVDS) standards. 
 
TTL voltage convention: (H&H p.475) 
Based on a power supply of +5V, the logic levels correspond to voltage levels, roughly like: 
 logic “0”  ≈  0V 
 logic “1”  ≈  4V 
In detail one finds the following margins and transition thresholds for the basic TTL family: 
 
 
 
 
 
 
 
 
As you will have noticed, the input to indicate a “1” state may be much lower (>2V) than the 
output will typically be (3.4V). Likewise the input to indicate a “0” state may be much higher 
(<0.8V) than the output will typically be (0.2V). The difference between the state conditions at 
input and at output is called the noise margin. This can be seen as the logic states being 
cleaned up at each gate. 
 
You see this behaviour illustrated below for other selected TTL and CMOS families X you 
may come across (chip IDs 74Xyy). Note: a TTL chip may not properly switch a CMOS chip. 
 

 
The noise margin effectively means that the signal is born again at each gate – rather than 
being progressively corrupted as it traverses a complicated circuit. The fact that the signal is 
renewed in this manner is an important aspect of digital circuitry and computer memory. 
 
You are now supposed to be able to distinguish TTL “1”s and “0”s by voltage measurements. 

TTL family 74yy Minimum (V) Nominal (V) Maximum (V) 
Supply Voltage (Vcc) 4.75 5.00 5.25 
Input:    High (Logic 1) 2.00  5.25 
Input:    Low  (Logic 0) 0.00  0.80 
Output: High (Logic 1) 2.40 3.40  
Output: Low  (Logic 0)  0.20 0.40 

+5 +5 
OUTPUT 

0 0 

INPUT 

HIGH 
HIGH 

LOW 
LOW 

3.3 

0.35 

2.0 

NOISE 
IMMUNITY 

0.8 

+5 +5 
OUTPUT 

0 0 

INPUT 

HIGH 
HIGH 

LOW 
LOW 

4.7 

0.20 

3.7 

NOISE 
IMMUNITY 

1.3 

+5 +5 
OUTPUT 

0 0 

INPUT 

HIGH 
HIGH 

LOW 
LOW 

4.7 

0.20 

2.0 

NOISE 
IMMUNITY 

0.8 

CMOS 
X= 

AC/HC/ 
AHC/C 

TTL/CMOS 
X= 

ACT/HCT 
AHCT/FCT 

TTL 
X= 

F/S/AS/ 
LS/ALS 
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Lecture 1: key equations 

AND 
(A.B) 

  
OR 

(A+B) 
 

NOT 
(A’) 

1 1 1 

0 0 1 

0 1 0 

0 0 0 

Q B A 

1 1 1 

1 0 1 

1 1 0 

0 0 0 

Q B A 

0 1 

1 0 

Q A 

Fundamental logic functions: 

Universal logic functions: 

NAND 
(A.B)’ 

 
NOR 

(A+B)’ 

0 1 1 

1 0 1 

1 1 0 

1 0 0 

Q B A 

0 1 1 

0 0 1 

0 1 0 

1 0 0 

Q B A 

Voltage conventions: 
Transistor-Transistor Logic (TTL) 
TTL: Low < +0.8 V High > +2.0 V 
 
Complementary Metal Oxide Semiconductor (CMOS) 
CMOS: Low < +1.3 V High > +3.7 V 

 
1. Association    A+(B+C) = (A+B)+C 
     A.(B.C)  =  (A.B).C 
 
2. Commutation   A+B = B+A 
    A.B  =  B.A 
 
3. Distribution                     A.(B+C)  = A.B+A.C 
    (A+B).(A+C) =     A+B.C 
 
4. Absorption           A+A.B   = A 
    A.(A+B) = A 
 
5. De Morgan’s Theorems  (A+B)’ = A’.B’ 
      (A.B)’ = A’+B’ 


