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Analogue Electronics 3: AC Circuits – capacitors 
We leave the regime of just working with DC currents and open our view to electronics 
behaviour over time, using alternating currents (AC). 
 
Capacitors – an analogue component with memory:  
A capacitor is a break in a circuit. In a DC circuit (static) you only know this as a switch, with 
limited functionality. However, in circuits with changing the voltages and currents it becomes 
extremely useful, because a capacitor also can store charge and can release the charge again. 
 
Using this ability capacitors are used as part of circuits which: 
 

• respond to changes (differentiate), 
 

• perform averaging (integrate), 
 

• select frequency ranges (filter). 
 
Before we jump into the dynamics we briefly will look again at the static properties of 
capacitors. You have already seen this in Physics 2A and probably elsewhere. 
 
Static properties of the capacitor: (H&H, 1.12, p. 20) 
The symbol for a capacitor is two parallel lines with a gap between them. This represents the 
simplest sort of capacitor: a pair of parallel plates with a small gap between them. Generally 
the same symbol is used for all capacitor designs.  

 
Only if they are sensitive to polarity, like electrolyte capacities are, then a “+” is added to the 
side which has to be wired to the positive potential to prevent the capacitor from becoming 
conductive or being destroyed (“to blow up” in laboratory slang, as it goes with a bang). Or 
arrows may be added across the symbol for adjustable capacities. 
 
A capacitor can store a fixed amount of charge at a particular voltage: 
 

Q = C V  (units: C=Coulomb, F=Farad and V=Volt) 
 
If you place a fixed voltage, V, across a capacitor current will flow until there is a charge of +Q 
on one surface and –Q on the other surface. 
 
Obviously several capacitors can be combined in the same circuit. The rules for combining the 
capacitances are exactly opposite to those for combining resistances: 
 

In series: 
1

𝐶𝑡𝑜𝑡𝑎𝑙
=

1
𝐶1

+
1
𝐶2

+ ⋯ 

 
In parallel:  𝐶𝑡𝑜𝑡𝑎𝑙 = 𝐶1 + 𝐶2 + ⋯ 

 
A Farad is a large unit, as it needs large surfaces and small gaps to store lots of charge. In 
electric circuits usually the following ranges of capacities are in use: pF, nF and at most µF. 
 
You may need to combine several capacitors to get the values you require in the labs. Also 
note that the production accuracy of capacities is significantly worse than for other elements. 
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Dynamic properties of the capacitor: (H&H, 1.13, p. 23) 
The interesting properties of capacitors occur in response to voltages or currents that change 
as a function of time. One way to summarize the behaviour is to say: the larger the current 
the faster the voltage across the capacitor changes. Or mathematically: 
 

�
𝑑
𝑑𝑡
�𝑄 = �

𝑑
𝑑𝑡
� 𝐶𝑉 

 
with the capacity constant in time this simplifies to: 
 

𝐼 = 𝐶 �
𝑑𝑉
𝑑𝑡
�        (units: A=Ampere, F=Farad and V/s=Volta/sec) 

 
A current source that provides a steady current to a capacitor will generate a steadily 
increasing voltage across the gap, like displayed below (note again the symbols for the 
connection to supply and ground). 

 
The sort of voltage “ramp” that you can see in the graph is the signature of a capacitor driven 
by a current source. The straight lines shown here for the voltage change with time are only 
approximations for small times – what small means will be qualified below. 
 
 
Discharging a capacitor through a resistor: 
Imagine that you could collect positive and negative charges on opposite surfaces of a 
capacitor and then connect it to a resistor. You would have a circuit that looks like this: 
 

In practice you would do this by having a second half of a circuit on the right with a battery 
that you would disconnect with one switch and then connect the resistor with a second 
switch. 
 
This cartoon circuit is described by: 

𝐶 �
𝑑𝑉
𝑑𝑡
� = 𝐼 = −

𝑉
𝑅
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The solution of this differential equation is: 
 

𝑉 = 𝐴𝑒�−𝑡 𝑅𝐶� � 
 
It describes an exponential decay in the voltage, V, with time, t, across the resistor. The value 
of the product RC is the characteristic time constant for the decay of the initial potential, A, 
across the capacity. That means that by choosing the values of “R” and “C” you can control the 
time dependence of the circuit! E.g. a time constant of t=2µs could be achieved by choosing 
R=50Ω and C=40nF. 
 

 
 
As a reminder: you should know that in all exponential decays the amplitude (here the voltage 
across the capacity) falls by a factor of 1-1/e = 0.63 (or to a remaining factor of 1/e = 0.37) 
during each time constant. E.g. after 5 time constants the initial signal will be diminished to 
0.7% of its original size. 
 
Charging a capacitor through a resistor: 
This is marginally more complicated, that is why we are looking at it second. In the circuit 
below we have batteries that can be connected via a switch to a resistor and a capacitor. You 
may notice that the arrangement of resistor and capacitor is the same as that of the two 
resistors in a voltage divider. 

 
We are going to determine the voltage across the capacitor as a function of time since the 
switch was closed (t=0). This circuit is described by: 
 

𝐼 = 𝐶 �
𝑑𝑉
𝑑𝑡
� =

𝑉𝑖 − 𝑉
𝑅
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The solution of this differential equation is: 
 

𝑉 = 𝑉𝑖 �1 − 𝑒−𝑡 𝑅𝐶� � 
 
Once the switch is closed the voltage Vi is spanning across both the resistor and capacitor 
together. What changes as a function of time is the proportion of the voltage drop which is 
across the two individual components. 
 
At the moment that the switch is closed the voltage across the capacity is zero, V=0, and the 
entire voltage drop, Vi, appears across the resistor. As the capacitor begins to charge the 
balance changes until V=Vi, that is all of the voltage drop appears across the capacitor. The 
time dependence of this change is again controlled by the characteristic RC time constant. 
The change in V as a function of time is shown on the graph below. t=0 is the moment when 
the switch is closed. 
 
In one t=1*RC the capacitor has charged up to 63% of its capacity. In t=5*RCs it has charged 
up to larger than 99%. 

 
 
We have now seen the basics operation: discharging and charging of a capacitor. Both are 
controlled by the same time constant (RC) which can be chosen by selecting components. 
 
Note that the exponential curve can be approximated by a linear description for time scales 
small with respect to the time constant. 
 
Next we are going to get a little more serious, and look at how capacitors can be used to 
perform calculus operations. 
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Differentiators: (H&H, 1.14, p. 25) 
The defining equation for a current through a capacitor involves a derivative:  
 

𝐼 = 𝐶 �
𝑑𝑉
𝑑𝑡
� 

 
Therefore it should be no surprise to discover that these components can then be harnessed 
to carry out calculus operations. Regard the following arrangement of a RC unit, in the 
configuration of a differentiator, between a time dependent input voltage signal, Vin(t), and 
output voltage signal, V(t): 
 

 
The voltage across C is (Vin – V) so: 

𝐼 = 𝐶 �
𝑑
𝑑𝑡
� (𝑉𝑖𝑛 − 𝑉) 

 
The resistor, R, acts as a current sink for the output circuit: 

𝐼 =
𝑉
𝑅

 
Together we have: 

𝑉
𝑅

= 𝐶 �
𝑑
𝑑𝑡
� (𝑉𝑖𝑛 − 𝑉) 

 
Vin is no longer just a static voltage from a battery. Instead it may be any time dependent 
voltage which we might want to differentiate. The output voltage as a function of time is: 
 

𝑉(𝑡) = 𝑅𝐶 �
𝑑𝑉𝑖𝑛
𝑑𝑡

−
𝑑𝑉
𝑑𝑡
� 

 
That is not exactly the derivative of the input signal, but also depends on its own derivative. 
This is like the output signal has gained some inertia – it cannot abruptly change its trend 
anymore. 
 
To ease calculation we can use an approximation which often applies: if the product RC is 
very small then the capacitor will respond quickly and: 

𝑑𝑉
𝑑𝑡

≪
𝑑𝑉𝑖𝑛
𝑑𝑡

 
 
Thus one can approximate above equation by neglecting the second term: 
 

𝑉(𝑡) ≈ 𝑅𝐶
𝑑𝑉𝑖𝑛
𝑑𝑡

 

Vin(t) V(t) 
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This approximation says: when the time constant of the RC element is much shorter than the 
variation of the input voltage, Vin, then the current through the resistor will be proportional to 
the change of the input voltage, with the capacity, C, being the proportionality factor. 
 
Below are sketches of the input and output in both the ideal case, where RC is much smaller 
than the rate of change in the input, and in the case where RC is too large for the current to 
closely follow the rate of change. In the second case the charging and discharging of the 
capacitor smoothes the output and makes it resemble the derivative less. 
 

 
 
In a few lectures time, you will see how this performance can be improved on via the use of 
operational amplifiers (op-amps), i.e. active rather than passive components. 
 
Integrators: (H&H, 1.15, p. 26) 
Integration can also be approximated in an analogous manner. The relevant circuit is pictured 
below. Compared to the differentiator the integrator circuit has the positions of the resistor 
and the capacitor switched: 

 
 
This time it is the voltage across R which is (Vin – V) so: 
 

𝐼 = 𝐶 �
𝑑𝑉
𝑑𝑡
� =

𝑉𝑖𝑛 − 𝑉
𝑅

 

 
The capacity acts here as a charge buffer. What we are looking for is to find is the integral of 
Vin(t). For that we need to make a similar approximation to that employed previously: if the 
product RC is very large then the capacitor will respond slowly and: 
 

𝑉 ≪ 𝑉𝑖𝑛 
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Thus one can approximate above equation by neglecting the second term: 
 

𝐶 �
𝑑𝑉
𝑑𝑡
� ≈

𝑉𝑖𝑛
𝑅

 
 
This approximation says: when the time constant of the RC element is much larger than the 
variation of the input voltage, Vin, then the current through the resistor will be proportional to 
the value of the input voltage, with the inverse capacity, 1/C, being the proportionality factor. 
 
We can transform this into the following integral: 
 

𝑉(𝑡) ≈ �
1
𝑅𝐶

��𝑉𝑖𝑛(𝑡)𝑑𝑡 + 𝐷 

 
If the input was a current I(t) rather than a voltage then the output voltage would give an 
exact integral via:  

𝐼 = 𝐶
𝑑𝑉
𝑑𝑡

 
 
In other words: put a large resistor in series with a voltage source and you will have an 
approximation to a current source.  Add a large capacity to ground to collect the charge and 
the voltage across the capacity will approximately be the integral over the input voltage, Vin. 
 
Of course, the capacity will charge up using the exponential law, as discussed above. Thus, the 
integrator only will respond approximately linearly to the input signal for a short time scale 
compared to the RC time constant, i.e. at an early point on the charging up curve discussed 
before. For integration over longer time scales saturation effects will become visible. The 
nature of the approximation is pictured below. 

 
In the top graph a square wave input, Vin, is overlaid on the output V. For a square wave input 
the integral is a ramp. The arrow to the lower graph shows the nature of the approximation. If 
RC is large then only the early part of the exponential charge-up is seen. This early part of the 
charging curve approximates a ramp and hence is the integral of the input square wave.  
 
 
 

V 

V 

Vin 

Vout 

Vout 



Lecture 6, 28th September 2012 

Electronic Methods, Semester 1 

 
In summary: 

• For a differentiator, we needed fast response, i.e. a small RC time constant. 
• For an integrator we need a slow response, i.e. a large RC time constant. 

 
Rule of thumb: 

• A capacity in series with the supply with the resistor connecting as current sink to 
ground will block DC currents, but the output will react on changes of the input. 

• A resistor in series with the supply with the capacity connecting as a charge buffer 
to ground will smooth out fast changes, but the output will react to slow changes. 

 
 
Properties of an inductor: (H&H, 1.16, p. 28) 
For completeness inductors need to be mentioned here. But they will remain a bit like the 
fifth wheel on the car for the rest of this lecture series, only employed when needed. 
 
An inductor is essentially a wire arranged in the form of a coil, or an element which is acting 
like one. While capacitors store energy in the electric field which is induced between its 
surfaces, inductors store energy in the magnetic field which is induced in the centre of the 
curled up current. 
 
Dynamic properties: 
In an inductance, L, voltage is generated proportional to the rate of change of the current in a 
circuit: 

𝑉 = 𝐿
𝑑𝐼
𝑑𝑡

         (units: V=Volt, H=Henry and A/s=Ampere/sec) 
 
Self inductance in a single circuit and mutual inductance between two circuits, mediated by 
a mutual magnetic field, are distinguished. 
 
Essentially inductors act the opposite way than capacities. However, they are rarely used as 
components for electrical circuits in practice, and if, usually only as components to efficiently 
damp oscillations. Inductors tend to be more bulky, more expensive and they suffer more 
performance problems than capacitors. 
 
Note however that other components, like wires, resistors and even capacities, also bear some 
inductive behaviour in real-world applications. But the inductive couplings usually are so tiny 
that they can safely be neglected and seldom are mentioned at all. Only the capacitive 
couplings of the elements usually are taken into account, if they become significant.  
 
Self and mutual inductance may become a significant correction for the high frequency 
behaviour of tracks on printed circuit boards or in cables (above ~100MHz or 1GHz). Modern 
programs to design the layout of such tracks take inductive couplings into account (as an 
additional correction to the typically significantly larger capacitive couplings). 
 
Mutual inductance becomes the main tool of trade in transformers, but these are not covered 
in this lecture. 


