
Lecture 7, 1st October 2012 
 

Electronic Methods, Semester 1 

Analogue Electronics 4: AC Circuits – capacitors and complex numbers 
Electrical engineers work with complex numbers earlier in their degree programmes than 
physicists do – in this lecture you are going to begin to discover why. 
 
Road to the frequency domain: 
We are now going to go back and repeat the previous lecture – except this time we will use 
complex numbers. Although this does not make a huge difference for the differentiators and 
integrators described previously it does become increasingly important as the circuits 
become more complicated. 
 
Starting with lecture 4 you have come into contact with the term impedance, mainly in 
contexts like input impedance and output impedance. It was mentioned that ohmic resistance 
is only one contribution to the impedance of a circuit. And it was mentioned that impedance 
describes the opposition of a circuit to the flow of a current for the full frequency spectrum. 
This is what we will deal with now for its ohmic, capacitive and inductive contributions. 
 
Impedance & Reactance: (H&H, p. 29) 
When an ohmic resistor is introduced into a circuit it has no effect on the time dependence of 
the voltages and currents. This time-independent behaviour is called resistance, and we have 
already discussed its properties. Components which alter the input waveform, such as 
capacitors and inductors, show a reactive behaviour. The time-dependant reaction to an input 
waveform is therefore called reactance. It turns out that Ohm’s law can then be generalized as: 
 
  impedance = resistance + reactance 
 
with the resistance being frequency independent and the reactance being frequency dependent. 
 
Linear signal transformation: 
Recall that you can compose any time-dependant signal, y(t), from a superposition of sine waves, 
characterised by their frequency, ωi, their relative phase shift, ϕi, and their Amplitude, Ai, by 
which they contribute:  

𝑦(𝑡) =  �Ai sin(𝜔𝑖𝑡 + 𝜑𝑖)
∞

𝑖=0

 

Thus, the discussion of complex waveforms always can be reduced to the discussion of sine 
(and cosine) waves. As a rule of thumb: fast signal changes need high frequency content. This 
you should have come across when studying the Fourier Transformation. 
 
Capacitors and inductors are still passive components. When they are subjected to sine waves 
they react only by altering the amplitude and phase of the sine wave, dependent on its 
frequency, but the output is still a sine wave. This behaviour is called linear. Thus, a 
complex input signal gets transformed depending on its frequency content in terms of 
individual sine waves. As the transformation is frequency dependent, in general the output 
signal wave has a distorted shape compared to the input signal, since the frequency 
components have been altered differently. 
 
Note that resistors are passive and linear components as well. Only they do not alter the phase 
and the alteration of the amplitude is universal, i.e. not depending on the frequency. 
 
We will come to non-linear behaviour, usually found in active components, at later lectures. 
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Reactance of a capacitor: (H&H, 1.18, p. 30) 
In order to characterize this component it is useful to look at the response for a single 
frequency. 

 
If a capacitor is driven by a voltage: 

𝑉(𝑡) = 𝑉0 sin𝜔𝑡 
 
then the current is  

𝐼(𝑡) = 𝐶
𝑑𝑉
𝑑𝑡

= 𝐶𝜔𝑉0 cos𝜔𝑡 
 
i.e. the current leads the input voltage by 90°, see graph below. 
 

 
Disregarding the 90° phase shift for a moment, the current can be written in the form: 
  

𝐼 =
𝑉

1
𝜔𝐶�

 

 
Compared with Ohm’s law, I=V/R, one can see that the effective resistance of a capacity is: 
 

𝑋𝐶 =
1
𝜔𝐶

 
 
This effective resistance combined with the phase shift is the reactance of the capacity. 
 
Note that for low frequencies (slowly varying signals) a capacitor has a high reactance, it 
blocks DC currents. For high frequency (quickly varying signals) a capacitor has a low 
reactance –it almost acts like a conducting wire. 
 
 

V(t) =  
V0 sin ωt 

I(t) 

C 

I(t) 

V(t) 

t 
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Voltages and currents as complex numbers: 
The amplitude and phase information of wave phenomena can be represented and 
manipulated in a compact way using complex numbers. Note that quantities with a physical 
representation in the real world, like electrical currents which are generated by a flow of 
electrons, only will be represented by the real part or the complex numbers. 
 
Using the complex representation the input voltage becomes: 
  

𝑉(𝑡) = 𝑉0𝑒𝑖(𝜔𝑡+𝜑) =  𝑉0(cos(𝜔𝑡 + 𝜑) +  𝑖 sin(𝜔𝑡 + 𝜑) ) 
 
with the amplitude V0, frequency ω and phase shift φ.  
 
In the following the reactance of a capacitor is presented using complex numbers. We still 
refer to same oscillating circuit pictured above. 
 
If a capacitor is driven by a voltage:  𝑉(𝑡) = 𝑉0𝑒𝑖𝜔𝑡 

Then the current is:     𝐼(𝑡) = 𝐶 𝑑𝑉
𝑑𝑡

= 𝑖𝜔𝐶𝑉0𝑒𝑖𝜔𝑡 

In Ohm’s law form:      𝐼(𝑡) = 𝑉(𝑡)
−𝑖

𝜔𝐶�
 

And the reactance of a capacitor becomes:   𝑋𝑐 = −𝑖
𝜔𝐶

=  1
𝑖𝜔𝐶

 

Again the reactance becomes very large (small) at very low (high) frequencies. 
 
Ohm’s law generalized: 
It is time to generalise Ohm’s law to: 

𝑉 = 𝐼𝑍      with  𝑍 = 𝑅 + 𝑋 
where Z is the impedance, R the resistance and X the reactance. Here V, I and Z are complex 
numbers. 
 
The impedance Z is a direct extension of the concept of resistance. Other rules to Ohm’s Law 
can be applied in the same manner, e.g. impedances for components arranged in series or in 
parallel can be combined in the same way: 
 
  In series:            𝑍 = 𝑍1 + 𝑍2 + 𝑍3 + ⋯ 
  In parallel:    1

𝑍� = 1
𝑍1� + 1

𝑍2� + 1
𝑍3� + ⋯ 

 
For the linear components that we have encountered so far the impedances are: 
 
  For resistors:          𝑍𝑅 = 𝑅 
  For capacities:        𝑍𝐶 = −𝑖

𝜔𝐶� = 1
𝑖𝜔𝐶�  

  For inductivities:   𝑍𝐿 = 𝑖𝜔𝐿 
 
Resistors only contribute resistance while capacitors and inductors only contribute reactance. 
Most circuits have both – and consequently the impedance has real and imaginary parts. 
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Phasor diagrams: (H&H, 1.20, p. 39) 
The impedance of a circuit can most easily be thought about as a point in the complex plane. 
For example, in the following circuit fragment we have two components in series. As a result 
we can add the two impedances together. This gives us a complex impedance, Z, that can be 
considered as an amplitude, |Z|, and a phase, φ, in the complex plane: 
 

Here the frequency response of the circuit fragment is shown in the complex plain. The real 
axis is the resistance and the imaginary axis is the reactance. The impedance is the 
combination of the two. 

 
Power in reactive circuits: (H&H, p. 33) 
Resistive components dissipate energy while reactive components do not. A capacitor stores 
the energy in the electric field and an inductor stores it in the magnetic field. Hence the 
consumption of power in a circuit with resistive and reactive components can be quite 
involved. In particular, the instantaneous power can change sign over a single period of an AC-
circuit. This corresponds to, for example, the charging and discharging of a capacitor. 
 
The power averaged over one oscillation period, T = 2π/ω, is:  
 

𝑃 =
1
𝑇
� 𝑉(𝑡)
𝑇

0
𝐼(𝑡)𝑑𝑡 

 
Using complex numbers the average power is the real part of the product of the complex rms 
amplitudes V and I*:  

𝑃 = 𝑅𝑒𝑎𝑙(𝑉𝐼∗) 
 
Here I* denotes the complex conjugate of I. This formalism is often more convenient. 

Resistance 
 

Reactance 
 

R 

-i/ωC Z 

φ 

C 

R 

Combined impedance:       𝑍 = 𝑅 − 𝑖
𝜔𝐶�  

Amplitude:                         |𝑍| = �𝑅2 + 1
𝜔2𝐶2�  

Phase:                                     𝜑 = tan−1
−1

𝜔𝐶�
𝑅
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Frequency domain: (H&H, 1.19, p. 35) 
The simplest frequency filters are frequency dependent voltage dividers (go back to lecture 4, 
if you can’t remember what a voltage divider is). The purpose of filters is to let signals in a 
particular frequency range pass without attenuation, while the signals outside this range are 
subject to attenuation, in dependence to the frequency. 
 
Depending on the arrangement RC elements can act as high-pass and as low-pass filters. 
Let’s first look at the high-pass configuration of a RC unit as shown below. We already know 
that the capacitor in the upper branch will block DC currents but is rather transparent for fast 
changing currents. 

 
For a voltage divider with two resistors we determined in lecture 4: 
 

𝑉 =
𝑉𝐼𝑁𝑅2
𝑅1 + 𝑅2

 

 
where R1 is the resistance in the upper branch and R2 is the current sink to ground. Using the 
generalisation of Ohm’s law we get: 

𝑉(𝑡) =
𝑉𝑖𝑛(𝑡)𝑍2
𝑍1 + 𝑍2

 

For the high pass filter this becomes: 

𝑉(𝑡) = 𝑉𝑖𝑛(𝑡)
𝑅

− 𝑖 𝜔𝐶� +  𝑅
 

and after a few calculations: 
 

 𝑉(𝑡) = 𝑉𝑖𝑛(𝑡)
𝑅�𝑅 + 𝑖

𝜔𝐶� �

𝑅2 + 1
𝜔2𝐶2�

= 𝑉𝑖𝑛(𝑡)
�1 + 𝑖

𝜔𝑅𝐶� �

1 + 1
𝜔2𝑅2𝐶2�

 

 
At low frequencies the second term in the denominator becomes exceedingly large. This 
shows that at low frequencies the high pass filter strongly attenuates V(t). 
 
Now we ask ourselves, what is the amplitude of V(t) as a function of frequency, ω? It is: 
 

|𝑉| = √𝑉𝑉∗ =
|𝑉𝑖𝑛|

�1 + 1
𝜔2𝑅2𝐶2�

 

 
It turns out that 1/RC is the characteristic frequency scale in this problem. 
 

Vin(t) V(t) 

C 

R 
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The function V/Vin(ω) is drawn here: 
 

It behaves as expected: for frequencies near zero the attenuation is very strong and for high 
frequencies it becomes negligible. Because the shape of this curve is universal for this kind of 
filter the behaviour of the filter can be described by pointing out just one characteristic point: 
 

𝜔 =
1
𝑅𝐶

 
 
At this frequency the attenuation will be such that: 
 

𝑉
𝑉𝑖𝑛

=
1
√2

      i.e. the power changes by a factor of 2:      
 𝑉2

𝑉𝑖𝑛2
=

1
2

 

 
A reduction in power by a factor of two corresponds to an approximate -3dB attenuation on 
the Dezibel range (we will come back to it in a later lecture): 

𝑔𝑎𝑖𝑛𝑑𝐵 = 20 𝑙𝑜𝑔10 �
𝑉
𝑉𝑖𝑛

� 

 
This point sometimes also is referred to as turn-on point. 
 
Next we look at the low-pass configuration of a RC unit, shown below. These are voltage 
dividers with the capacitor in the lower branch and we know already that it will pass DC 
currents but will smooth out fast alternating charges. 

As before this can be analysed as a voltage divider using impedance: 
 

𝑉(𝑡) =
𝑉𝑖𝑛(𝑡)𝑍2
𝑍1 + 𝑍2

= 𝑉𝑖𝑛(𝑡)
−𝑖

𝜔𝐶�

𝑅 − 𝑖
𝜔𝐶�
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and after a few calculations: 
 

𝑉(𝑡) = 𝑉𝑖𝑛(𝑡)
1
𝜔2𝐶2� − 𝑖𝑅

𝜔𝐶�

𝑅2 + 1
𝜔2𝐶2�

= 𝑉𝑖𝑛(𝑡)
1 − 𝑖𝜔𝑅𝐶

1 + 𝜔2𝑅2𝐶2
 

 
This circuit attenuates at high frequencies as the second term in the nominator becomes large.  
 
Again we ask ourselves, what is the amplitude of V(t) as a function of frequency, ω? It is: 
 

|𝑉| = √𝑉𝑉∗ =
|𝑉𝑖𝑛|

√1 + 𝜔2𝑅2𝐶2
 

 
The function V/Vin(ω) is drawn here: 

By this point we find our expectation confirmed that RC is the characteristic frequency scale 
in this problem as well. The -3dB attenuation point, where the power is reduced by a factor of 
two, here sometimes is referred to as turn-off point. 
 
 
Notes: 
 
In the previous lecture we looked at the output voltage of a RC unit in the time domain and 
found RC to the characteristic time constant of its behaviour. Here we look at the output 
signal of a RC unit in the frequency domain and find 1/RC to be characteristic frequency of 
the found behaviour. 
 
Here we only have discussed the response of the RC units to a signal with a single frequency. 
Arbitrary signals will be a superposition of some or many frequency components: however, 
we can consider the response of the circuit to each individual frequency in turn. 
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Bode plot: 
Here both the amplitude and the phase information are presented together for a RC unit in 
low-pass configuration. This set of plots gives a complete characterization of the filter circuit. 
 
The term Bode plot specifically refers to a plot of the gain of a unit versus the frequency, with 
both axes in logarithmic representation. In this log-log display wide parameter ranges can be 
covered and deviations from exponential behaviour, plotted linearly in this representation, 
are easy to spot. 
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The phase information is plotted on a linear scale on the y-axis with a log scale for the 
frequency axis. 
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