
Lecture 8, 4th October 2012 

Electronic Methods, Semester 1 

Analogue Electronics 5: AC Circuits – oscillating LCR circuits 
In the last lecture we began to look at using complex numbers to represent the behaviour of 
reactive circuits. Here we apply this to the case of circuits which oscillate. You hopefully will 
find in this electrical example some aspects to be familiar from your mechanics courses, and, 
hence, that it will be a useful way to practice using complex numbers.  We will use complex 
numbers in AC circuits to generate resonances and for tuning. 
 
Example: Graphic Equalizer 
You will be familiar with the idea that arbitrarily complicated sounds can be broken down 
into bands of frequencies that can be amplified independently: this is what happens in a 
graphic equalizer. The one shown below can be used on a stage to modify the sound of an 
electric guitar. 
 

 
 
The oscillations of the strings of the guitar are picked up in a sensor and translated into 
oscillations of a current in a conductor. Filter circuits in the graphics equalizer, using the 
same principles we discussed in the last lecture, split the frequency spectrum into several 
bands, which in turn are routed through individually regulated amplifier stages, before they 
are mixed (merged) again into one signal. 
 
These procedures, of course, are not limited to the range of acoustic signals. In electronics you 
generally just deal with higher frequencies, and you do not talk about the pitch of a sound but 
about the frequency of a sine wave. 
 
And remember: any signal shape can be produced by a superposition of sine waves. 
 
 
 



Lecture 8, 4th October 2012 

Electronic Methods, Semester 1 

 
To recap: 
 

• The output of a linear circuit, driven by a sine wave at some frequency ω, is itself a 
sine wave at the same frequency (only the amplitude and phase may have changed). 

• We analyze linear circuits (those with resistors, capacitors and inductors) by asking 
how the output voltage (amplitude and phase) depends on the input voltage, for a sine 
wave input, in dependence of the frequency. 

• We use the generalised Ohm’s law to specify the current corresponding to a 
particular voltage. 

• Write signals (voltages) in the form V = V0ei(ωt + φ), which makes arithmetic much 
simpler than using sines and cosines directly. 

• To find actual voltages – after a calculation – look just at the real part of the result. 
 
Series LCR circuit: 
This is a simple example which is analogous to a familiar mechanical situation. This hopefully 
helps to understand it. 
 
Take a series arrangement of a capacity, a resistor and an inductor. By attaching an 
alternating power supply, ε, we force the voltage across the components to oscillate with 
angular frequency, ω. The resistor dissipates energy while the capacitor and inductor 
sometimes store and sometimes release energy. 

 
An analogous mechanical setup to this AC circuit is the following: a weight is suspended on 
a horizontal rail, on which it can move with friction. A spring is attached horizontally, which 
on the other side is forced by a sinoidal movement. 
 
The capacitor stores potential energy in an electric field in a similar manner to the spring 
storing energy in its deformation. The inductor stores energy in a magnetic field in a similar 
manner to the weight storing kinetic energy via its motion. Therefore: 
 

• the inverted capacity, 1/C, relates to the spring constant, K, 
and 

• the inductance, L, relates to the inert mass, m. 
 
See further relations in the following table: 

C 

R 

L 

Ε = Ε0 eiωt  
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Driven LCR circuit (analogue computer) Driven weight on a spring 

  Charge on capacitor Q   Displacement x 

  Current I   Velocity v 

  Energy stored in capacitor ½Q2/C   Energy stored in spring ½Kx2 

  Energy stored in inductor ½LI2   Kinetic energy ½mv2 

 
Previously we would have analysed the circuit with Kirchoff’s voltage law: 
 

𝑉 = 𝑉𝑅 + 𝑉𝐶 + 𝑉𝐿 

𝑉 = 𝐼𝑅 +  
𝑄
𝐶

+ 𝐿
𝑑𝐼
𝑑𝑡

 

Now we will switch to use the complex equivalents. To highlight this we use the following 
notation:  complex voltage, E, complex current, Y, and complex impedance, Z. 
 
We would like to see a simple relationship between the voltage and the current and therefore 
express all quantities in terms of impedance: 
 

𝐸 = 𝑌𝑍𝑅 + 𝑌𝑍𝐶 + 𝑌𝑍𝐿 

𝐸 = 𝑌𝑅 +  
𝑌
𝑖𝜔𝐶

+ 𝑌𝑖𝜔𝐿 

𝐸 = 𝑌 �𝑅 + 𝑖 �𝜔𝐿 −  
1
𝜔𝐶

�� 

 
The content of {} is the total impedance of the circuit, ZT, which, no surprise, is a complex 
number: 

𝑍𝑇 = 𝑅 + 𝑖 �𝜔𝐿 −  
1
𝜔𝐶

� 

This can be written in polar representation: 
𝑍𝑇 = |𝑍𝑇|𝑒𝑖𝜑 

 
where |ZT| is the magnitude and φ is the phase of the complex impedance. 
 
The magnitude of ZT is found by multiplying ZT by its complex conjugate and then taking the 
square root: 

|𝑍𝑇| = �𝑍𝑇𝑍𝑇∗  = �𝑅2 + �𝜔𝐿 −  
1
𝜔𝐶

�
2
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The phase of ZT is derived in the complex plane considering the triangle formed by the real 

part (adjacent), the imaginary part (opposite) and the magnitude (hypotenuse). See below: 
The phase, φ, therefore is: 

tan𝜑 =
𝜔𝐿 −  1

𝜔𝐶
𝑅

 
 
We can state our results using the complex form of Ohm’s Law: 
 

𝑌 =
𝐸
𝑍𝑇

=
𝐸0𝑒𝑖𝜔𝑡

|𝑍𝑇|𝑒𝑖𝜑
=
𝐸0𝑒𝑖(𝜔𝑡−𝜑)

|𝑍𝑇|  

 
 
Significance of the phase φ: 
A phase shift appears between the voltage across and the current through the circuit. If φ is 
the phase associated with the complex impedance ZT then the phase of the current Y is 
different from that of the voltage E by –φ. 
 
In a capacitive circuit: the current leads the voltage:  φ < 0. 
In an inductive circuit: the voltage leads the current:  φ > 0. 
 
This is illustrated below: 
 

 
 

φ R 

ωL – 1/ωC 
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We have now completed the most basic analysis of the LCR circuit driven at an angular 
frequency, ω, summarized below.  

Instantaneous analysis: 

𝐸 = 𝑌 �𝑅 + 𝑖 �𝜔𝐿 −  
1
𝜔𝐶

�� 

The magnitude of the complex impedance, ZT:  

|𝑍𝑇| = �𝑅2 + �𝜔𝐿 −  
1
𝜔𝐶

�
2

 

Phase φ:  

tan𝜑 =
𝜔𝐿 −  1

𝜔𝐶
𝑅

 
 
Resonant nature of series LCR circuit: (H&H, 1.22, p. 41) 
What now will be of interest is the way this circuit’s oscillations become resonant if the 
driving frequency is appropriately tuned. The same is true for mechanical systems as well. 
Below we will again use the complex number representation in the discussion of resonance. 
 
The resonant point of the circuit is the frequency at which the current flowing around the 
circuit will become maximal. First we want to find the appropriate angular frequency, the 
maximal current and the phase shift at the resonant point. 
 
The magnitude of current, Y, is given by the ratio of the amplitude, E0, to the driving voltage to 
the amplitude of the complex impedance, |ZT|: 

𝑌 =
𝐸0

|𝑍𝑇| =
𝐸0

�𝑅2 + �𝜔𝐿 −  1
𝜔𝐶�

2
 

If the angular frequency, ω, is varied the maximum current is found when:  

𝜔𝐿 −  
1
𝜔𝐶

= 0 
This occurs when: 

𝜔𝐿 =
1
𝜔𝐶

   hence   𝜔0 =
1

√𝐿𝐶
 

This angular frequency is the resonant frequency, ω0, for the LCR circuit. 

C 

R 

L 

E = E0 eiωt  
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At this angular frequency the circuit resonates with a maximum current: 

𝑌𝑚𝑎𝑥 =
𝐸0
𝑅

 
The resonant phase of voltage with respect to current is: 

tan𝜑 =
𝜔𝐿 −  1

𝜔𝐶
𝑅

= 0   hence   𝜑 = 0 
The circuit transits from capacitive lead to inductive lead as the frequency passes through the 
resonance. 
 
Our original expression for the current in the circuit: 

𝑌 =
𝐸0

�𝑅2 + �𝜔𝐿 −  1
𝜔𝐶�

2
 

can be rewritten in terms of the resonant frequency using  ω02 = 1/LC: 
 

𝑌 =
𝐸0 𝜔 𝐿�

��𝑅𝜔 𝐿� �
2

+ (𝜔2 −  𝜔0
2)2

=
𝐸0𝜔𝐶𝜔0

2

�(𝑅𝜔𝐶𝜔02)2 + (𝜔2 −  𝜔0
2)2

 

 
Below this function is plotted for example component values. The symmetric behaviour 
around the resonance frequency, ω0, is evident, as is the dependency of the peak size on the 
energy dissipation in the circuit, Ymax = E0 / R: 

 
Next we can determine the width of the peak by finding the full width at half maximum 
(FWHM), i.e. the width between the two points at which the current is half of its resonant 
value.  

FWHM = 2∆𝜔 = 2 ��𝜔1
2�
− 𝜔0�� 

determined from: 
𝐸0
2𝑅

=
𝐸0 𝜔 𝐿�

��𝑅𝜔 𝐿� �
2

+ (𝜔2 −  𝜔0
2)2

 

After solving this quadratic equation in ω one finds as leading term:  

FWHM ≈ √3
𝑅
𝐿

 
 
In the leading term the width of the peak is proportional to the resistance, i.e. the peak 
becomes more pronounced as the power dissipation decreases. Thus, superconducting (R=0) 
resonant circuits could be considered to be of great interest. 
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Here the width of the peak is indicated for one of the above examples: 
 

We have already seen that the phase shift changes as we pass through resonance. 

tan𝜑 =
𝜔𝐿 −  1

𝜔𝐶
𝑅

 
Using ω02 = 1/LC this can be rewritten as:  

tan𝜑 = �𝜔2− 𝜔0
2�

𝑅𝜔
𝐿�

 

 
In summary: 
Useful signatures of resonance are: 

• There is a peak in the amplitude of the current. 
• The phase shift is equal to zero. 
• The phase shift switches signs either side of resonance. 
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Power in AC circuits: 
In the LCR circuit above the energy is supplied by the function generator, as electrical energy. 
This sets up a flow between energy stored in capacitor and energy stored in inductor. All the 
while energy dissipated in resistor in the form of heat. 
 
The power dissipated in the resistor is the energy dissipated per second: 
 

𝑃 = 𝑌2𝑅 
using the complex current: 

𝑌 = 𝐼𝑒𝑖(𝜔𝑡−𝜑) 
 

However care is required when squaring Y, as the actual current is only the real part: 
 

𝑌 =  ℜ�𝐼 𝑒𝑖(𝜔𝑡−𝜑)� 
    = 𝐼 cos(𝜔𝑡 − 𝜑) 

 
Note that I is the amplitude of the real AC current. And only this current needs to be 
substituted into the expression for the power dissipated in the resistor: 
 

𝑃 = 𝑌2𝑅 = 𝐼2𝑅 cos2(𝜔𝑡 − 𝜑) 
 
This is an expression for the instantaneous power at time t. It describes the dissipation at 
any moment in the circuit. Notice the change from instantaneous current, Y, to the magnitude 
of the current, I. 
 
Often we are interested in the average behaviour of the circuit over longer periods of time. 
Then we need to integrate the instantaneous properties over multiples of the AC period. So: 
 

𝑃𝑎𝑣 = 𝐼2𝑅〈cos2(𝜔𝑡 − 𝜑)〉 
where 

〈cos2(𝜔𝑡 − 𝜑)〉 =
1
2

 
 
Thus the average power dissipated is: 

𝑃𝑎𝑣 =
1
2
𝐼2𝑅 

 
This is half of the maximum power dissipated instantaneously each cycle, as illustrated below: 
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Root mean square (RMS) quantities: 
We can write the average power as: 

𝑃𝑎𝑣 =
1
2
𝐼2𝑅 = �

𝐼
√2
�
2

𝑅 

The quantity in brackets is given the name root mean square of I: 

𝐼𝑟𝑚𝑠 =
𝐼
√2

 

The formula for the power dissipated then returns to the form familiar from DC circuits: 
𝑃𝑎𝑣 = 𝐼𝑟𝑚𝑠2𝑅 

This notation can also be used for voltages, so that: 

𝑉𝑟𝑚𝑠 =
𝑉
√2

 

Thus we have Ohm’s law for RMS quantities: 

𝐼𝑟𝑚𝑠 =
𝑉𝑟𝑚𝑠
𝑍

 
where Z is the total impedance: 

𝑍 = �𝑅2 + �𝜔𝐿 −  
1
𝜔𝐶

�
2

 

 
Phase and the dissipated power: 
The power delivered to the resistor can be written in terms of the generator voltage, Vrms, and 
the phase of the impedance, φ: 
 

𝑃𝑎𝑣 = 𝐼𝑟𝑚𝑠 �
𝑉𝑟𝑚𝑠
𝑍
�𝑅 =  𝐼𝑟𝑚𝑠𝑉𝑟𝑚𝑠 �

𝑅
𝑍
� =  𝐼𝑟𝑚𝑠𝑉𝑟𝑚𝑠 cos𝜑 

 
with: 

cos𝜑 =
𝑅

�𝑅2 + �𝜔𝐿 −  1
𝜔𝐶�

2
 

 
We can see that: 

• The maximum power is delivered when: φ=0 giving cos(φ)=1, i.e. at resonance 
• In purely capacitive or inductive circuits: cos(φ)=0, i.e. no power is delivered 

 
 
Take home message: 
By using complex quantities we have been able to analyse the behaviour of a resonant circuit 
via familiar concepts such as Ohm’s Law and the power dissipated in a resistor. 

R 

Z 

φ 


