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Analogue Electronics 6: AC Circuits – transmission lines 
We have talked extensively about input and output impedances and what you can expect to 
happen when you attach two pieces of equipment to each other. With high frequency signals 
we need a new perspective. For slow signals we think about a wire having a potential 
difference (voltage) with respect to ground. For very fast signals we need to start thinking 
about waves travelling along a guide. 
 
The cables commonly used to carry high frequency signals effectively are transmission lines, 
and in electromagnetism they are generally called wave guides. 
 
In general a transmission line consists of two parallel conductors, one is the signal wire and 
the other is the ground wire (or shield). Each of these conductors has a resistance, a 
capacitance and an inductance per unit length. An AC voltage at one end causes currents to 
flow in the conductors, producing fields E and H. The behaviour can be analysed completely in 
terms of electromagnetic waves. We will avoid that here in favour of a more pictorial 
approach. 
 
Transmission lines: 
You have a 30m transmission line as part of your kit in the lab. This is for checkpoint A1 
where you investigate the phenomena discussed in this lecture. It is made from RG-58 type 
coaxial cable and fitted with BNC connectors (BNC = Bayonet Neill-Concelman), both designed 
for excellent signal transmission and shielding at affordable cost. The connector plug and inside 
sections of your transmission line look like this: 

 
Coaxial, or shot “coax”, cables are a common way to connect different pieces of equipment, e.g. 
used in many of the experiments in the second semester Junior Honours lab course. They are 
needed where signal integrity is important and small or fast signals need to be shielded 
against radio frequency noise (RF noise). Bayonet or other locking connectors are used where 
frequent plugging and unplugging operations occur, e.g. the function generator and 
oscilloscope you use are fitted with BNC sockets. 
 
 

http://www.phy.davidson.edu/StuHome/phstewart/IL/speed/Cableinfo.ht
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The aim of this lecture is to demonstrate that: 
• a coaxial cable has a characteristic impedance Z0, 
• you will get signal reflections depending on the impedance of the “load” at the end of 

the cable. 
 
Below is a schematic illustration of a signal, in this case a single square wave, travelling along 
a transmission line. As stated above the transmission line consists of two wires, which are 
visible at each end of the sketch. In the middle of the sketch one wire becomes a cylinder with 
the other wire threaded inside it. The cylinder is a conducting screen or shield which protects 
small signals from interference due to external electric fields. The conducting screen is 
connected to ground. The signal wire goes straight down the axis of the conducting screen. 
 

The schematic of the transmission line can be redrawn in terms of an equivalent arrangement 
of components, also referred to as four terminal or two-port network. This will mean that 
we can use our existing understanding of circuits to analyse its behaviour. Here we think 
about the resistance, capacitance and inductance as quantities per unit length of cable. 
 

 
At first you may be surprised to learn that there is some capacitance and induction between 
the two conductors. But think about it: suppose you send pulse of charge down the signal wire. 
An electrical field will form across the insulator to the shield, the same way as in a capacitor. 
As the charge travels down the wire a magnetic field is formed, which in turn causes self 
inductance. We will try to understand this further in the following. 
 
And note that the resistance between the conductors is large but finite and that the resistance 
along the wire is small but not zero. 
 
 
 
 

Schematic of a 
transmission line 

Signal wire Conducting screen Equivalent 

Input port Output port 
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Consider a section of transmission line of length δz made from two uniform wires connected 
between a source and a load, as illustrated below.: 
 

You put in a signal, V(z,t) or I(z,t), and ask how the output looks like after the additional 
length δz. To answer you need to know the following quantities: 

R = resistance / unit length (both lines added together) 
G = transverse conductivity / unit length 
L = inductance / unit length 
C = capacitance / unit length 

A continuous line then is described by going to the limit δz→0. We can now approach this 
equivalent circuit for a transmission line in the same way we have treated all previous circuits: 
Change in voltage (Kirchoff I): 

𝑉 − �𝑉 +
𝜕𝑉
𝜕𝑧

𝛿𝑧� = 𝑅𝐼𝛿𝑧 + 𝐿
𝜕𝐼
𝜕𝑡
𝛿𝑧 

Change in current (Kirchoff II): 

𝐼 − �𝐼 +
𝜕𝐼
𝜕𝑧
𝛿𝑧� = 𝐺𝑉𝛿𝑧 + 𝐶

𝜕𝑉
𝜕𝑡

𝛿𝑧 

 
We can simplify these to give the following set of basic differential equations: 
 

𝜕𝑉
𝜕𝑧

= −�𝑅𝐼 + 𝐿
𝜕𝐼
𝜕𝑡
� 

𝜕𝐼
𝜕𝑧

= −�𝐺𝑉 + 𝐶
𝜕𝑉
𝜕𝑡
� 

 
Solutions of the basic equations: 
Transmission lines are often used to carry high frequency signals, for example a fast pulse 
associated with the detection of a particle, or a bit in a serial link. As asserted before, any 
signal form can be considered as a superposition of sinusoidal signals (its frequency 
content is made visible by a Fourier Transformation). Therefore here we can use a simple sine 
wave to represent our signal in general: 

𝑉(𝑧, 𝑡) = 𝑉(𝑧)𝑒𝑖𝜔𝑡 
𝐼(𝑧, 𝑡) = 𝐼(𝑧)𝑒𝑖𝜔𝑡 

 
If we substitute these into the basic equations above we get the telegrapher’s equations: 
 

𝜕𝑉
𝜕𝑧

= −{𝑅 + 𝑖𝜔𝐿}𝐼(𝑧) 

𝜕𝐼
𝜕𝑧

= −{𝐺 + 𝑖𝜔𝐶}𝑉(𝑧) 

 
So, we have got rid of the time derivatives and have replaced them with complex terms. 

G δz 

C δz 

R δz 

L δz 

δz 

V(z,t) V+δz (∂V/∂z)  

I(z,t) I+δz (∂I/∂z)  
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The next step is to take the z derivative of each of these equations, and then to substitute the 
not derived equations for (∂V/∂z) and (∂I/∂z). This gives a pair of equations in terms of V and 
I alone: 

𝜕2𝑉
𝜕𝑧2

= {𝑅 + 𝑖𝜔𝐿}{𝐺 + 𝑖𝜔𝐶}𝑉(𝑧) = 𝑝2𝑉(𝑧) 
𝜕2𝐼
𝜕𝑧2

= {𝑅 + 𝑖𝜔𝐿}{𝐺 + 𝑖𝜔𝐶}𝐼(𝑧) = 𝑝2𝐼(𝑧) 

with      𝑝2 = {𝑅 + 𝑖𝜔𝐿}{𝐺 + 𝑖𝜔𝐶} 
 
An equation showing that a quantity is proportional to its own second derivative has 
sinusoidal solutions. Here we know that we want to deal with complex numbers, so we look 
for ejφ type solutions. In the most general form they look like: 
 

𝑉(𝑧) = 𝐴𝑒−𝑝𝑧 + 𝐵𝑒𝑝𝑧 
𝐼(𝑧) = 𝐷𝑒−𝑝𝑧 + 𝐸𝑒𝑝𝑧 

 
Note that p is complex: = 𝛼 + 𝑖𝛽 . So with the time dependence eiωt they look like: 
 

𝑉(𝑧, 𝑡) = 𝐴𝑒−𝛼𝑧𝑒𝑖(𝜔𝑡−𝛽𝑧) + 𝐵𝑒𝛼𝑧𝑒𝑖(𝜔𝑡+𝛽𝑧) 
𝐼(𝑧, 𝑡) = 𝐷𝑒−𝛼𝑧𝑒𝑖(𝜔𝑡−𝛽𝑧) + 𝐸𝑒𝛼𝑧𝑒𝑖(𝜔𝑡+𝛽𝑧) 

 
These equations describe waves travelling in the +z (amplitudes A and D) and –z (amplitudes 
B and E) directions, where α quantifies the attenuation per unit length, ω the frequency and β 
the phase of the waves. 
 
Impedance Z0 – characteristic impedance of cable: 
Using the time-independent relations we work further towards a relationship between I and V 
and see how close we can get to Ohm’s law. Using: 
 

𝜕𝑉
𝜕𝑧

= −{𝑅 + 𝑖𝜔𝐿}𝐼(𝑧)   ⇒   𝐼(𝑧) = �−1
{𝑅 + 𝑖𝜔𝐿}� �  

𝜕𝑉
𝜕𝑧

 
and 

𝑉(𝑧) = 𝐴𝑒−𝑝𝑧 + 𝐵𝑒𝑝𝑧    ⇒    
𝜕𝑉
𝜕𝑧

= 𝑝(−𝐴𝑒−𝑝𝑧 + 𝐵𝑒𝑝𝑧) 
we get: 

𝐼(𝑧) = �𝐺 + 𝑖𝜔𝐶
𝑅 + 𝑖𝜔𝐿

(𝐴𝑒−𝑝𝑧 − 𝐵𝑒𝑝𝑧) 

and call the impedance term: 

𝑍0 = �𝑅 + 𝑖𝜔𝐿
𝐺 + 𝑖𝜔𝐶

 

to get: 

𝐼(𝑧) = �
1
𝑍0
� (𝐴𝑒−𝑝𝑧 − 𝐵𝑒𝑝𝑧) 

 
Our cable, i.e. transmission line, has a complex impedance. This hardly surprises because we 
represented its behaviour using capacitors and inductors. Z0 is called the characteristic 
impedance of the cable. 
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The above already looks close to Ohm’s law, but still describes waves going either direction on 
the cable. Suppose you would have an infinitely long uniform cable: sending a pulse down you 
would never get a reflection in return, i.e. B=0. The above would simplify to: 
 

𝑉(𝑧) = 𝐴𝑒−𝑝𝑧 

𝐼(𝑧) = �
1
𝑍0
�𝐴𝑒−𝑝𝑧 

giving: 
𝑉(𝑧)
𝐼(𝑧) = 𝑍0 

 
i.e. the impedance seen at any point of an infinite line is Z0. One can turn this around and 
conclude: any line can be made to behave like an infinite line if it is terminated with Z0 . That 
is a key point to remember: any signal arriving at the end a line which is terminated with Z0 
will not be reflected. This configuration is illustrated below. 
 

Matching impedances as condition to avoid reflections: this is the same condition as we 
discussed for input and output impedances to maximise power transfer. Think about it: it is 
actually the same thing! If no signal is reflected, all power is transmitted to the next element. 
 
Properties of the characteristic impedance Z0: 
The behaviour of the characteristic impedance is not intuitive from the expression: 

𝑍0 = �𝑅 + 𝑖𝜔𝐿
𝐺 + 𝑖𝜔𝐶

 

To get an idea we simplify it down to the terms which have the biggest effect. This way we can 
see the essential features and the frequency dependence. 
 
In coaxial cables polythene and air often are used as insulators between the central conductor 
and the outer screen. Both have high resistances, therefore G usually is very small: G ≈ 0. 
 
From your electrodynamics you may remember that in an ideal conductor the current only 
runs at the surface and the centre of the conductor is field-free. In a real conductor the 
penetration of the field actually decreases with the frequency, i.e. for high frequencies the 
resistance in the signal wire and the outer screen actually increases like: 

𝑅~√𝜔 
The term ωL increases faster with the frequency than 𝑅~√𝜔, so that for the impedance of a 
cable the terms  for R and G can be neglected from frequencies like ω ≈107, giving: 

𝑍0 → �𝐿 𝐶�  

Thus, at high frequencies Z0 becomes approximately real, i.e. purely resistive. 
 
There are various standards for the impedance of cables, with Z0 typically 50-100Ω, depending 
on the construction of the cable. You will get to measure this in the lab. 
 

I(z,t) 
cable impedance: Z0 

termination: Z0 
            = 
  no reflection! 
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Velocity of signals down a transmission line: 
The velocity of the signal and the distance over which it decays can be determined from the 
details of p in the equations above. Evaluation of α and β: 
 

𝑝 = 𝛼 + 𝑖𝛽 = �(𝑅 + 𝑖𝜔𝐿)(𝐺 + 𝑖𝜔𝐶) 
 
To simplify take the approximation G=0, then: 
 

𝑝 = 𝛼 + 𝑖𝛽 = 𝑖𝜔√𝐿𝐶��1 + 𝑅
𝑖𝜔𝐿� � 

 
The next step is to assume large ω and use the leading term of the Taylor expansion for the 
root, (1+x)n ≈1+nx:  

𝑝 = 𝛼 + 𝑖𝛽 ≈ 𝑖𝜔√𝐿𝐶 �1 + 𝑅
𝑖2𝜔𝐿� � 

re-arrange to: 
 

𝑝 = 𝛼 + 𝑖𝛽 ≈ 𝑅√𝐿𝐶
2𝐿� + 𝑖𝜔√𝐿𝐶  

to find: 
𝛼 ≈ 𝑅

2𝑍0�  

𝛽 ≈  𝜔√𝐿𝐶 
 
In this approximation the velocity which the wave crests travel, the phase velocity, becomes: 
 

𝑉𝑝ℎ𝑎𝑠𝑒 = 𝜔
𝑘� = 𝜔

𝛽� = 1
√𝐿𝐶�  

 
i.e. constant at high frequencies. 
 
You will notice that we are using concepts that are familiar from courses on waves to analyse 
the behaviour of a voltage signal. A deep understanding of transmission lines comes from 
Maxwell’s equations and the propagation of waves in conducting cavities (also called wave 
guides). There one can derive the full dispersion relation ω(k), discuss its behaviour in 
dependence of all four parameters, R, G, L and C, and find the general solutions for the phase 
and the group velocity, vphase(ω) and vgroup(ω). 
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Examples: 
Let’s put some numbers into the equations for a couple of the most common types of copper 
coaxial cables (transmission lines), using guessed dimensions. 
 
Insulator: air cored   Inner radius a = 0.5 mm Outer radius b = 5 mm 
 

R =     = 9×10-5 √f Ωm-1 
C = 2πε0 / ln(b/a)   ≈ 24 pFm-1 
L = (1/ 2π) μ0 ln(b/a) ≈ 0.46 μHm-1 

 
𝑉𝑝ℎ𝑎𝑠𝑒 = 1

√𝐿𝐶� = 1
�𝜇0𝜀0� = 𝑐 

𝑍0 = �𝐿 𝐶� = 138Ω 

 
Insulator: polythene cored Inner radius a = 0.5 mm Outer radius b = 5mm 
 

Dielectric constant εr = 2.25 between the inner and outer conductors. 
Because the capacitance is proportional to εr we can simply modify the values 
determined for the air cored case: 
 

𝑉𝑝ℎ𝑎𝑠𝑒 = 𝑐
√2.25� = 𝑐

1.5� = 0.67𝑐 

𝑍0 = �𝐿 𝜀𝑟𝐶� = 138
1.5� = 92Ω 

 
We see, that at high frequencies the dimensions of the cable do not matter to first order. Only 
by choosing the insulator material and its dimensions between signal wire and screen one 
can chose the phase velocities and characteristic impedances. And with plastic materials 
the refractive index 𝑛 = √𝜀𝜇 ≈ √𝜀 can be designed, as it depends of the density. 
 
Lets take another look at the signal integrity in the cable with air cored insulator. When 
sending a 100MHz signal through it we are well in the high frequency regime discussed above. 
So: 

𝛼 ≈ 𝑅
2𝑍0� =

9 ∗ 10−5�𝑓Ω𝑚−1

2 ∗ 138Ω
= 3.3 10−3𝑚−1 

 
This means that the signal decreases in amplitude by the factor 1/e every 303m of cable. 
Note, however, that because α actually depends on frequency, the pulse shape will change as 
the signal will be distorted as well as attenuated. 
 
If the integrity of the shape of the signal is our main goal then we want α to be independent 
of frequency. This can be achieved! This requires G≠0, as true in real insulators. The condition 
is:  

𝑅
𝐿

=  
𝐺
𝐶

       ⇔       𝑅𝐶 = 𝐺𝐿 
 
The downside of this is that the attenuation increases: α ≈ R/Z0 . Although the signal is now 
undistorted it is attenuated twice the original value. This can be verified by plugging into the 
equations for Z0 and p. 
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Terminated lines: (H&H, 13.09, p. 879) 
Our previous analysis enabled us to determine the characteristic impedance of a cable and the 
phase velocity of signals. To evaluate the extent of reflection and transmission for a given type 
of cable under various different termination conditions we can work with reflection and 
transmission coefficients. The situation we are working with can be pictured as: 

 
The impedance at some general position z is: 
  

𝑍(𝑧) =
𝑉(𝑧)
𝐼(𝑧) = 𝑍0

𝐴𝑒−𝑝𝑧 + 𝐵𝑒𝑝𝑧

𝐴𝑒−𝑝𝑧 − 𝐵𝑒𝑝𝑧
 

 
where A is the amplitude of the forward signal and B the amplitude of the reflected signal. 
Thus, the impedance at the end of the cable, where z=ℓ, is: 
  

𝑍𝑇 =
𝑉(ℓ)
𝐼(ℓ) = 𝑍0

𝐴𝑒−𝑝ℓ + 𝐵𝑒𝑝ℓ

𝐴𝑒−𝑝ℓ − 𝐵𝑒𝑝ℓ
 

 
which can be rearranged to give the ratio: 
  

Reflected
Incident

=
𝐵𝑒𝑝ℓ

𝐴𝑒−𝑝ℓ
=
𝑍𝑇 − 𝑍0
𝑍𝑇 + 𝑍0

 

 
This is called the voltage reflection coefficient, KR, and it is complex: 
 

𝐾𝑅 =
𝑍𝑇 − 𝑍0
𝑍𝑇 + 𝑍0

     = |𝐾𝑅|𝑒𝑖𝜑𝑅  

 
where φR is the phase change on reflection. 
 
The resultant voltage transmitted to the terminating impedance is the sum of the forward and 
backward voltages. The ratio to the forward voltage is called the voltage transmission 
coefficient, KT: 

𝐾𝑇 = 1 +
𝐵𝑒𝑝ℓ

𝐴𝑒−𝑝ℓ
= 1 +

𝑍𝑇 − 𝑍0
𝑍𝑇 + 𝑍0

 

𝐾𝑇 =
2𝑍𝑇

𝑍𝑇 + 𝑍0
 

which means:  
𝐾𝑇 − 𝐾𝑅 = 1 

 
Both of these coefficients apply to voltages. There are different formulae for current 
coefficients, which are derived in a similar way. 
 
We are now in a position to consider the cases that are regularly encountered in the lab. 
  

z=0 z=ℓ 

ZT=|ZT|eiφT 
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Special Case 1 : Short circuit termination 
As shown in the sketch below, a short circuit termination is where the signal wire and the 
conducting screen are attached to each other at the far end of the coaxial cable. The load is 
zero, hence there cannot be any voltage transmitted to it. In terms of our coefficients this is 
written ZT = 0: 

 

𝐾𝑅 =
𝑍𝑇 − 𝑍0
𝑍𝑇 + 𝑍0

= −1 = |𝐾𝑅|𝑒𝑖𝜑𝑅      and     𝐾𝑇 =
2𝑍𝑇

𝑍𝑇 + 𝑍0
= 0 

yielding:  
|𝐾𝑅| = 1     and      𝜑𝑅 = 𝜋 

 
This means 100% reflection with a 180° phase change, as pictured for the pulse in the sketch 
above. You also can think of this as the charge of the pulse being able to flow at the 
termination from the signal wire to the outer screen and then returning towards the input on 
the outer screen, hence the inverted polarity of the signal. 
 
Special Case 2: Open circuit termination 
In the open circuit termination the signal wire and the conducting screen are not attached 
to each other or to anything else. Hence the load at the end of the cable corresponds to an 
infinite impedance. In terms of our coefficients this corresponds to ZT = ∞: 

 

𝐾𝑅 =
𝑍𝑇 − 𝑍0
𝑍𝑇 + 𝑍0

= +1 = |𝐾𝑅|𝑒𝑖𝜑𝑅      and     𝐾𝑇 =
2𝑍𝑇

𝑍𝑇 + 𝑍0
= 2 

yielding:  
|𝐾𝑅| = 1     and      𝜑𝑅 = 0 

 
This again means 100% reflection but now with no phase change. The charge which reaches 
the end of the signal wire has no other way than to change direction and to return back on the 
signal wire, hence the maintained polarity of the signal. 
  
Note that the double height forward voltage appears across ZT. From the discussion of input 
impedances in previous lectures it should no surprise anymore to see that a large input 
impedance will give rise to a large transmitted signal. 
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Special Case 3: Termination with Z0 
We already know that for matched impedances we do not get any reflections. We found that 
any line can be made to behave as though it were infinitely long by terminating it with a 
matching impedance Z0. In terms of our coefficients we have ZT = Z0: 

 
 

𝐾𝑅 =
𝑍𝑇 − 𝑍0
𝑍𝑇 + 𝑍0

= 0 = |𝐾𝑅|𝑒𝑖𝜑𝑅      and     𝐾𝑇 =
2𝑍𝑇

𝑍𝑇 + 𝑍0
= 1 

yielding:  
|𝐾𝑅| = 0 

 
We get no reflections and the full voltage across load. 
 
 
Reflections will distort the signal on the wire as the components superimpose. In applications 
which transmit signals this can be rather problematic. It therefore very often is important to 
avoid reflections. Here are a few examples: 

• reflections in an analog TV signal between aerial and TV set caused shifted ‘ghost 
images’ 

• reflections in modern digital TV signals causes the signal quality to degrade, the 
superposition of signals may cause the receiver to read wrong bits, leading to ‘drop 
outs’ 

• in a coincidence circuit, where signals e.g. signify the presence of a particle or another 
type of  event, reflections may cause double counting or fake coincidences. 

 
 
This concludes what is covered in this lecture series on linear behavior. After the break of 
two weeks, where you have time to work on the first part of your design exercise, we will 
continue by looking at the behavior of non-linear components. 

Z0 


