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Analogue Electronics 9: Improving on RC filters 
In the last lecture we introduced the Op Amp and basic ideas about feedback. In checkpoint 
A2 you are going to use an Op Amp first as an amplifier and then as a filter. A while back we 
started looking at filters built using only resistors and capacitors (RC filters). Using Op Amps it 
is possible to obtain filter performance which is more ideal.  
Contents: 

• Integrators & differentiators 
• Active filters 
• Frequency response of RC filters 

Integrators: (H&H, 4.19, p. 222) 
Our initial op-amp circuits just involved resistors. These could be used to amplify, add and 
subtract. Here we are going to look at op-amp circuits involving capacitors as well. We begin 
by replacing the feedback resistor with a capacitor. 

Intuitively one might expect that this would mean that only rapidly varying parts of the 
output are fed back for comparison with the input. Using the golden rules we will show that 
this circuit actually performs an integration of the input voltage. We encountered an integrator 
previously in circuits only involving resistors and capacitors. The op-amp version of this 
integrator proves to be a significant improvement on the passive version. 

From the golden rules we deduct: 
• the inverting input must be a virtual ground 
• in addition the op-amp draws no current. Hence whatever current is feeding back 

through the capacitor must be cancel current through the resistor. 
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Therefore the current I = Vin / R flows through the capacitor, i.e.: 
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This avoids the restriction to small signals that was essential to the circuit which involved only 
a resistor and a capacitor. In this circuit Vout does not need to be small, here the limit is only 
given by the output capability of the op-amp. 
 
Direct RC – op-amp comparison: 
The RC circuit has the restriction that: Vout << Vin . That limitation keeps the circuit in a regime 
where the capacitor charging curve still looks roughly straight. If this condition is violated 
then the exponential character of the capacitor charging will become evident. This is because 
the desired behaviour of the passive integrator circuit relies on the relationship between 
voltage and current for a capacitor (I = C dV/dt). 
 
With an op-amp the point from which the capacitor is charging stays at 0V since it is a virtual 
ground. At the same time it is possible to take the signal out at the other end of the capacitor, 
since the op-amp provides it. Thus, there is no intrinsic restriction on Vout in this circuit. 
 
So, the active integrator made from an op-amp circuit seems like a perfect integrator. But 
what do you expect to happen if you put a voltage across the input for a long time?  You 
guessed it, it will hit a limit. This limit is imposed by the power supply for the op-amp. 
Actually it is a voltage slightly smaller than the external supply voltage which cannot be 
exceeded by the output of the op-amp. It will saturate. Care does need to be taken to avoid 
having Vout saturate. The signal will distort and your measurement may be spoiled beyond 
recovery. 
 
Note: if the input that needs to be integrated is already a current rather than a voltage then the 
input resistor R is no longer required. 
 
Integrators / Low pass filters: (Frequency analysis) 
The circuits that perform calculus can also be thought of as filters. Filters are circuits which 
attenuate signals within a certain frequency range while allowing signals outside this range to 
pass unchanged.  
 
 As with the passive circuits before we first looked at the behaviour in the time domain, and 
have found that the circuit performs calculus. We will now look at the same circuit in the 
frequency domain, where we will again describe its behaviour as a low pass filter. 
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Here we can revert to using complex impedances. We can then analyse the circuit using the 
same formalism as was used for resistors alone. This approach relies on the idea that any time 
varying input voltage can be represented as a series of sine waves of different amplitudes, 
phases and frequencies ω. 

𝑍1 = 𝑅 

𝑍2 = −
𝑖
ωC

 
Using the golden rules we find: 

• Rule 1: Since point B is at ground then point A must be too. 
Consequence: the voltage across Z2 is Vout and the voltage across Z1 is Vin 

• Rule 2: Since no current flows into the inverting input, all current flowing through the 
feedback must flow towards the input. 
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We have a circuit which amplifies signals by varying amounts depending on the frequency. Low 
frequency signals are amplified more whereas very high frequency signals are strongly 
attenuated. The amplification factor is also complex, which indicates that the output of the 
circuit will have a different phase to the input. This circuit is known as a low-pass filter, 
because it allows low frequency signals through while strongly attenuating high frequency 
signals. 
 
Differentiators: (H&H, 4.20, p. 224) 
Here the positions of resistor and capacity around the op-amp circuit are swapped, the 
capacity in the input and feedback via the resistor. It is only the rapidly varying part of the 
input signal that will make it through to the amplifier. 

From the golden rules we find: 
The inverting input is a virtual ground and the op amp draws no current. Whatever current 
arrives at the inverting input must be cancelled by a current flowing through the feedback 
path. The rate of change of input voltage produces a current: 

𝐼 = 𝐶 �
𝑑𝑉𝑖𝑛
𝑑𝑡

� 
This is balanced by the current through the feedback resistor, I = Vout/R. Thus: 

𝑉𝑜𝑢𝑡 = −𝑅𝐶 �
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𝑑𝑡

� 

This is perfect differentiation – with no approximations. In contrast to the integrator there are 
no problems with drift or saturation (an integral will augment slowly over time whereas a 
differential does not). 
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But it probably doesn’t surprise you to learn that real-life op-amps can’t respond to arbitrarily 
fast input signals. In the case of differentiators there will be be problems at very high 
frequencies due to the limitations of the op-amp. It is normal to make more additions to this 
circuit in order to introduce an upper frequency limit. We will go through that a bit later on… 
 
Direct RC – op-amp comparison: 
The RC circuit has the restriction that 𝑑𝑉𝑜𝑢𝑡

𝑑𝑡
≪ 𝑑𝑉𝑖𝑛

𝑑𝑡
 , i.e. the components have to be chosen such 

that the filter circuit responds very rapidly. If this condition is violated then the exponential 
character of the capacitor charging and discharging will become evident. 
 
This restriction is necessary in order to have (nearly) all of the variation in time across the 
capacitor. (If it was all then readout would be impossible!) With the op-amp circuit all the 
variation in time can be across the capacitor. The feedback loop mirrors the behaviour 
(because of the virtual ground). But readout remains possible as the op-amp provides the 
signal. 

 
Reminder: the op-amp circuit is and active circuit, it draws power from a power supply to 
generate its output signal. By contrast circuits with resistors and capacitors alone are passive. 
 
Differentiators / High pass filters: (Frequency analysis) 
We can repeat our analysis in the frequency domain again by making use of complex 
impedances for the feedback networks. You may be beginning to see how this form of analysis 
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could be extended to more complicated input and feedback networks: all you need to know is 
the impedance of each. Here the complex impedances are: 

𝑍1 = −
𝑖
ωC

 
𝑍2 = 𝑅 

Using the golden rules: 
• Rule 1: Since point B is at ground then point A must be too. 

Consequence: the voltage across Z2 is Vout and the voltage across Z1 is Vin 
• Rule 2: Since no current flows into the inverting input, all current flowing through the 

feedback must flow towards the input. 
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This time we have a circuit which amplifies the input signal in proportion to its frequency. 
Hence low frequency signals are relatively attenuated while high frequency signals are 
magnified. Again there is a change in phase indicated by the fact that the amplification is 
complex. This type of circuit is called a high-pass filter because it lets high frequency input 
signals go past. 
 
Coping with op-amp limitations: 
As mentioned above op-amps have their own performance limitations especially at very high 
frequencies. These can be dealt with via the addition of one or two more components. 

 
The performance of the op-amp differentiator begins to deteriorate at high frequencies. This is 
due to the sub-optimal performance of the op-amp itself.  The best way forward is to take 
control of the frequency at which the circuit ceases to operate successfully. An additional R 
and C are added to create a well controlled maximum frequency at which the differentiator will 
cease to operate. 
 
The RC product for the new components will be smaller than for the original differentiator 
components, to set the frequency limit at a higher value. The new circuit actually will become 
a band-pass filter with controlled low and high roll-off. 
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Active Filters: 
In analysing circuits in the frequency domain we again have in mind the idea that any input 
signal can be represented as a superposition of sine waves of varying amplitudes, phases and 
frequencies, ω. For circuits involving more than just resistors the amplitude and phase 
typically are frequency dependent. The characteristics of a circuit can be plotted on graphs 
showing how the amplitude and phase of the output signal varies with the frequency of the 
input signal.  
 
First we will look at just the amplitude of the output for both high-pass and low-pass filters. 
This is the key characteristic of these circuits. To completely characterise a filter both the 
amplitude and the phase information is required. The standard way to present this is via a 
Bode plot, a specific choice of display using logarithmic quantities detailed further below. 
 
Active high-pass filters: 
For the sake of variety let’s consider a circuit with a resistor R1 and a capacitor C1 arranged in 
series in the input circuit and a resistor R2 in the feedback circuit. By determining the 
impedance of the input circuit and of the feedback circuit it is straight forward to calculate the 
amplitude and phase response (we just have to copy what has been done above). 
So, what is the amplitude of V(t) as a function of frequency, ω? Remember, for complex 
numbers we need to calculate: 

|𝑉| = √𝑉 𝑉∗ 
With the impedances: 
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From this expression it can easily be seen that when the frequency of the input signal ω 
becomes very small (or zero) the gain of the circuit also becomes very small (or zero). For 
large ω the gain approximates the ratio R2/R1, i.e. the gain of the op-amp. Plotted 
quantitatively for the case (R1 = R2) this looks like: 
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At the frequency ω=1/R1C1 the output is 1/√2 of the maximum output signal. This is taken as 
the characteristic frequency of a filter circuit. For reasons which we will encounter below 
when looking at the Bode plot this is also called the -3dB point for the filter. 
 
Active low-pass filters: 
Here we will consider a similar circuit where only the capacitor has been moved. In this case 
the input circuit consists of a resistor R1 while the feedback circuit consists of a resistor R2 
and a capacitor C2 in parallel. By calculating the impedances of the input and feedback circuit 
the gain of the circuit can be determined in the same way as above. The amplitude of V(t) as a 
function of frequency, ω, here is: 

|𝑉| = √𝑉 𝑉∗ = |𝑉𝑖𝑛| �
𝑅2
𝑅1
�
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Again the behaviour for low and high ω can be considered. Small ω leads to relatively 
unchanged amplitudes at gain R2/R1. High ω gives significant attenuation. Below is the graph 
plotting the gain (again for the case R1 = R2). Again the -3dB point for the filter is pointed out 
where the gain is 1/√2 of the maximum: 

 
Bode plots: 
You may have noticed the exponential behaviour of the last two gain curves. In Bode plots this 
is linearised by plotting the amplitude and the phase of the output as a function the logarithm 
of the frequency of the input signal. On the y-axis the phase is plotted linearly, but the gain also 
plotted in logarithmic form. 
 
The logarithmic scale used for the gain is called Decibels (dB) and is defined as: 

Gain 𝑑𝐵 = 20 log
𝑉𝑜𝑢𝑡
𝑉𝑖𝑛

 

That may look odd to you to begin with. Let’s look at some values to get a feeling for it:  
linear gain: 

Vout/Vin log gain (dB)  linear gain: 
Vout/Vin log gain (dB) 

10 20 dB  10000  80 dB 
2    6 dB  1000  60 dB 

√2    3 dB  100  40 dB 
1    0 dB  10  20 dB 

1/√2   -3 dB  1     0 dB 
1/2   -6 dB  0.1 -20 dB 

1/10 -20 dB  0.01 -40 dB 
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So, the Decibel scale is designed to display huge gain ratios but also to make small changes 
from unity visible, using the very nature of logarithms. Why then the odd factor 20? 
Remember, the power in a system is the square of the amplitude. Taking the logarithm turns 
that into a factor 2. The decibel scale therefore is linear in the exponent of the power handled in 
a system: a step of 10 dB corresponds to a change of a factor of 10 in the power of a signal. 
 
Now think about your ear, which dynamic range in power it has to work with. Here are some 
examples related to the power (in Watts) of noise levels and to the Decibel scale: 

noise power: 
(Watt) 

noise level 
(dB) 

examples 
(at 1m distance) 

1000000 W 180 dB rocket engine 
10000 W 160 dB jet engine 
1000 W 150 dB klaxton (warning hooter) 
100 W 140 dB truck diesel engine 
10 W 130 dB machine gun 
1 W 120 dB pneumatic hammer 

0.3 W 115 dB trumpet 
10-1 W 110 dB power saw 
10-3 W   90 dB shouting voice 
10-5 W   70 dB human conversation, typewriter 
10-7 W   50 dB fridge 
10-8 W   40 dB human whisper 
10-12 W     0 dB nominal hearing threshold 

Human hearing clearly works on a logarithmic scale in power. But it is also clear that high 
powered noise will physically damage the hearing apparatus, especially when extended over 
time. Since the advent of mobile sound equipment in the 80’s the rate of hearing loss has – 
especially in young people – increased dramatically. Why? People consume the music 
dominantly via ear phones and tend to crank up the volume to block out environmental 
sounds, like that of traffic. This way they end up with sound levels of up to 110 dB directly 
delivered to their ears. Also the sound level in discos has gradually been increased over the 
last decades, in average by 10 dB. Have sound levels of 110-115 dB been the norm in the 80’s 
recent surveys generally found levels of above 120 dB, with a peak value of 128 dB. The same 
tendency has been found for live music performances. The way to enjoy these and still to be 
friendly to the own ears is to use some kind or ear protection, which – sadly – only few people 
do. So the need for hearing aids will further rise. 
 
Let’s return to the characteristics of the Bode plot of our electrical signals. Above the -3 dB 
point was mentioned as important. It is the point where the output voltage of the filter circuits 
is attenuated to the factor 1/√2 of the input voltage: 

-3𝑑𝐵 = 20 log
1
√2

 

The output power at this point is attenuated to the factor 1/2. The -3 dB point is also called 
roll-off point. Beyond this point the attenuation of the gain of the filter generally will be 
exponential, i.e. linear in the Decibel scale. This is one of the main characteristics of a filter 
circuit: the ability to remove unwanted frequency components of a signal beyond a given point. 
To describe this ability the slope of the attenuation beyond the -3 dB point is recorded in 
dB/decade: the sharper the slope, the better the filter. 
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In the example Bode plots below for a RC high-pass and a RC low-pass filter the -3dB point is 
highlighted at 10 kHz. The gradient of the attenuation of the voltage gain beyond the roll-off 
point is -20dB per decade in frequency. 

 
Below the gain curves for the two filters the corresponding phase curves are given on the 
same frequency scale. This allows studying the phase behaviour of the circuits in correlation 
with the gain behaviour, i.e. to fully understand the behaviour of the RC circuits. 
 
It turns out that the phase shift at the -3 dB point is ±45° with respect to the low and high 
frequency limits. The phase turns symmetrically around this point on the logarithmic 
frequency scale. This is another reason for locking at the behaviour on the logarithmic scale. 
In the region where the circuits let the signal pass the phase shift is small. But already one 
decade in frequency off the -3 dB phase shifts become visible, coinciding with attenuation 
effects starting to rise. 
 
Improvements of the frequency response of RC filters: (H&H, 5.01, p. 263) 

The RC circuits we have dealt with so far are the simplest filters available. And you have seen 
that low-passes as the one above also act as integrators (and high-passes as differentiators). 
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The performance in these functions can be improved, even using passive components only. 
The simplest means is to cascade several circuits to a sequence of filters (although they will 
have to be interspersed with follower circuits to avoid loading problems due to input 
impedance). Cascading several circuits as the above to a sequence causes the “knee” in the 
amplitude response of the output to become sharper. Below this is shown on the linear scale 
as well as in the Bode plot for a selected number (n) of chain elements. 
 

 
However, as n increases the improvement in the filter properties slows down. To achieve an 
even sharper fall-off different filters must be used. There are numerous different sorts of 
filters available, which will not be described here. Each type represents a different sort of 
compromise: 

• some have very sharp cut-offs in frequency 
• some offer a very flat gain as a function of frequency for un-attenuated signals 
• still others are very well behaved in terms of phase and so don’t distort the unfiltered 

signal. 
Many of these ideas have their foundation in all-passive circuits. The use active components 
generally improves further the quality and range of the scope of the application. 
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Filter performance criteria – ω: (H&H, 5.04, p. 267) 
The following criteria are used to qualify the performance of a filter with respect to the 
frequency ω. 
 
Reminder: In comparing the amplitude of two signals the Decibel scale is often used: 

𝑑𝐵 = 20 log10
𝐴2
𝐴1

 

hence 3dB is a factor of √2, 20 dB is a factor of 10 and 40dB is a factor of 100. 
 
Cut-off frequency: this is another name of the roll-off point at -3dB. 
 
Passband: the region of frequencies where the amplitude and phase of the signal are relatively 
un-attenuated by the filter. The passband is limited by the point (or points) where the gain 
falls below the -3dB limit. The phase shifts which do occur within the passband are important 
as they will distort un-attenuated signals.  
 
Stopband: the region of frequencies where the attenuation exceeds some minimum amount. 
This minimum could be 40dB of attenuation, i.e. a suppression factor of 1/100 in amplitude 
and 1/10000 in power. Signal components with frequencies that fall in the stopband are so 
strongly suppressed that they don’t play any significant role in the output signal. 
 
Attenuation gradient: the slope of the attenuation well beyond the cut-off frequency giving 
the rate of the increase of the attenuation (in dB) with every decade in frequency. 
 


