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Analogue Digital Conversion and Measurement: Conversion & noise 
The lecture course began with digital electronics and logic gates. We then went on to analogue 
signals. Here we are going to go close the circle, by discussing how to convert analogue signals 
into digital data for manipulation on the computer. We then will see how noise will influence 
these measurements and how you can try to reduce it. 
 
(1) Sampling & Frequency: 
The process of digitizing an analogue signal involves taking a signal that is a continuous 
variation in voltage with time and then deciding how to approximate it by discrete voltages at 
discrete time steps. Information is lost converting from analogue to digital. The number of 
subdivisions in the signal size (of a voltage signal on the vertical axis in the plot below) is the 
resolution. The number of subdivisions in the time (on the horizontal axis in the plot below) 
is the sampling rate. Note that this nomenclature has a single signal parameter in mind which 
varies with time, like the one shown in the upper part of the plot. 

 
There is another type of resolution: in the CCD chip of a camera the sampling of the signal is 
not done in time but in the plane of the image which is subdivided into pixels. This is called the 
spatial resolution. The signal size is given by the charge collected during the exposure in 
each pixel. The precision of the brightness measurement in each pixel is defined is defined by 
the resolution of the charge-to-digital converter of the CCD chip. 
 
In high demanding applications you may have all three ways of digitisation present. Take the 
LHCb Ring Imaging Cherenkov (RICH) detectors as an example. As most detector components 
of experiments at the Large Hadron Collider (LHC) it takes data samples at the rate of bunch 
crossings at the LHC, with a rate of 40MHz, i.e. it takes one sample every 25ns. The RICH 
detectors cover an area of about 3m2 of active area with a pixels size (spatial resolution) of 
2.5x2.5mm2, that is about 500,000 pixels which are read out in parallel (currently at a 
reduced rate of 1MHz, but the upgrade foresees a readout at 40MHz). Each pixel has to be 
sensitive to single photons in the near UV and visible spectrum. A novel photon detection 
technology allows creating charge pulses with a charge equivalent of up to 5000 electrons 
(=0.8 fQ) from single photons in an electronic environment which features in its front-end an 
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absolute peak noise level of typically less than 1100 electrons with a Gaussian variance of the 
noise of typically 150 electrons. By setting a threshold (in steps of approximately 25 
electrons) as low as possible but still high enough to prevent any noise to pass it, any charge 
pulse larger than the threshold will be interpreted as a photon hit. Here the signal resolution 
is defined by the step size with which the threshold can be set, while the readout is binary (a 
pixel has seen a hit or no-hit) which minimises the data volume to be shipped for each event 
(occurring at each LHC bunch crossing). 
 
Amplitude resolution: 
Let’s return to the simple time-dependent signal of the plot above. The shown amplitude 
(voltage) resolution of the digitised readout may or may not be sufficient for the application at 
hand. You would need to answer the following questions to find this out: 

• What is the largest and smallest signal size you would like to be able to measure? 
This defines the dynamic range your system has to cover. 

• What is the noise level in your system? I.e. what are the smallest changes of your signal 
you still can resolve? 

This defines the smallest sensible step size of your digitisation. If you make your step size 
larger than the noise fluctuations you lose information in the digitisation process. If you make 
your step size smaller than the noise fluctuations you do not gain any further information (you 
only increase uselessly the data volume...). So if you find that your system cannot resolve your 
signals or its substructures because they are smaller than the noise level you first have to 
work (hard) to reduce the noise level in your system before it would make sense to increase the 
resolution of the digitisation step. 
 
Whether you can afford the optimal resolution (step size) in your digitisation process is 
another question. Analog-to-Digital Converters (ADCs), whether they convert voltage levels 
or (much less common) integrate over charge pulses, generally provide a numbers of 
digitisation levels, called bins, which come in powers of 2. In general n-bits code 2n ADC bins. 
This commonly is referred to as an n-bit ADC. 
 
This nomenclature is simply caused by the data structure the converted value is stored in: an 
8-bit ADC, for example, stores the converted measurement in an integer number represented 
by 8 bits and therefore can represent 256 different ranges of analogue values (step sizes) by 
the numbers 0 to 255. The measurement results typically are displayed in a histogram 
displaying the number of entries per histogram bin across the range of ADC bins. If the dynamic 
range of an 8-bit ADC is 0...+5V than each bin represents a voltage range of 5V/256bins = 
19.53mV/bin. So the size of your Least Significant Bit (LSB) is about 20mV and your typical 
measurement error due to the digitisation is ½ LSB, i.e. ~10mV in this example. On top of 
that you will have the error from the noise in your system. So in applications you may find: 
 

   n-bit ADC number of ADC 
bins 

ADC bin range comment 

21   1-bit ADC       2       0:1 binary readout, e.g. LHCb RICH 
24   4-bit ADC     16     0:15 e.g. fast, data volume limited 

applications 
28   8-bit ADC   256   0:255 e.g. for cost-effective, low spec 

applications 
210 10-bit ADC 1024 0:1023 common research ADC 
211 11-bit ADC 2048 0:2047 high grade research ADC 
212 12-bit ADC 4096 0:4095 spectroscopy grade ADC 
213 13-bit ADC 8192 0:8191 high spectroscopy grade ADC 
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The cost of ADCs goes fairly linear with the number of bins provided. For high precision 
research grade ADCs from low-volume production you can almost equal the number of ADC 
bins with GBP, for a single readout channel. The high precision and linearity also comes at the 
cost of a slow conversion time of the order of 10µs. Low and medium grade ADCs produced in 
high volumes for the consumer market are orders of magnitudes cheaper. 
 
Now look back at the plot above with the example sampling of a time-variant single signal. 
You already may have noticed that the digitised wave form below the input signal is inverted 
with respect to the input. So an inverting ADC was employed. That is no problem as for digital 
signals transformation and formatting operations are performed without further loss of 
information. 
 
Sampling rate / time resolution: 
And once more we look at the example plot above but now we look at the sampling in time. 
You will notice that the sampling steps in time look rather coarse. Very significant 
approximations have been made going from the analogue to digital versions. We will have to 
examine how coarse the sampling in time may be in order to still get a sensible representation 
of the original signal, i.e. one from which the main characteristics still can be determined 
without ambiguities and with limited errors.  
 
As for the vertical resolution you have to answer some questions to specify the parameters of 
your system. You need to know: 

• What is the fastest change in your signal that you still want to be able to resolve? 
The required time resolution will determine the necessary sampling rate. 

• How many successive samples shall the system be able to store at the sampling rate 
before it (in many cases) is read out at a slower speed? 

That will define how much fast analogues and/or digital memory (also referred to as buffer 
memory) you will need to record your longest and most complex signal. And it will be an 
important input for determining the dead time of your system, i.e. the fraction of time your 
system is unable to take data because it is busy. 
 
To shed more light on the question of the necessary sampling rate for a measurement, let’s 
have a look at an admittedly unrealistic, yet more familiar example: suppose you know 
someone with regular mood swings, in the morning this night-owl is grumpy but in the 
evening fit and in a good mood. You have to ask here the same questions as for any electronic 
signal: 

1) What is the period of the signal (the mood swings)? 
2) How often do I have to sample (meet the person) to get a reasonable idea about the 

character of the signal (the behaviour of the person)? 
As for the period, in the example it is a day. So if you only meet this person in the mornings 
you get an incomplete impression of that person’s behaviour. You need at least two regular 
visits to get the complete picture. Even then the timing of your visits, by chance, may fall in the 
times of the changes of mood and you don’t get the right idea how severe the mood swings 
are, i.e. about the amplitude of the signal. 
 
In summary: two samples per period are the very minimum you need to get correct 
characteristics of a periodic signal. To avoid the pitfall of getting the amplitude measurement 
wrong because you sample at a fixed phase shift with respect to the periodic signal you want a 
sampling rate which is getting more than two samples per period. This is known as the Nyquist 
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criterion, which states that the sampling frequency must be at least twice the highest 
frequency in the signal: 
 

fsample ≥ 2fmax 
 
If this condition is not fulfilled then a problem occurs which is known as aliasing. Here the 
sampled components of a signal with a frequency higher than the Nyquist limit (f > ½ fsample) 
fake a signal of lower frequency. This is illustrated below. 

The red sine wave is the original high frequency signal. When samples at high enough rate, 
like in the upper plot with approximately 7.5 samples per period, one can reconstruct from the 
samples well the frequency and amplitude of the signal. In the lower plot the same signal is 
only sampled with about 1.5 samples per period. As you sample at different phase positions of 
the signal you still get a fair result on the amplitude of the signal. But the frequency you get 
significantly wrong. If you fit the poorly sampled signal with the hypothesis of having measured 
a sine wave you get the best fit with a sine wave of a significantly lower frequency (blue sine 
wave). The fake lower frequency signal is the alias of the true higher frequency signal which 
was under-sampled. 
 
In general the nature of a signal is unknown. In order to control aliasing the signal first has to 
be filtered by a low-pass which fulfils the condition: f3dB = fmax, i.e. has to match the Nyquist 
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criterion defined by the sampling capability (fsample) of your system. Employing filters in this 
way is common. They are known as anti-aliasing filters. 
 
The above discussion was done using sine-wave signals. As any signals can be build by 
superposition of sine-waves in principle the problem is solved for any signal. But there are 
two further points worth to be spelled out: 

• If you have a square wave as input, for example, the frequency spectrum of a perfect 
square goes to infinite frequencies. Any physical device producing or receiving this wave 
will act as a low-pass with some cut-off frequency. This limit is called the analogue 
bandwidth of the device.  The effect is that the square nature of the wave is reduced as 
the edges of the square are rounded off, the stronger the lower the cut-off frequency is. 
When a signal is composed from many sine-waves it may be that part of the frequency 
spectrum of that signal is above the Nyquist limit of your digitisation equipment. Using 
an anti-aliasing filter will distort the signal in the same way the analogue bandwidth 
limit. Typically it reduced the cut-off further with respect to the other components in 
the data acquisition chain. 

• The discussion was done so far for periodic signals. If you sample such signals with a 
frequency near the Nyquist limit, i.e. at slightly above two samples per period, you may 
start out to sample at an unfortunate phase point of the signal and may first estimate 
the amplitude significantly too small. But as the phase shift of the samples with respect 
to the signal builds up over a number of periods you eventually get samples at the full 
amplitude of the signals as well, i.e. the closer you sample to the Nyquist limit the more 
periods you need to fully reconstruct your periodic signal. 
Your demands for the sampling will rise when you work with signal pulses. Then you 
do not have several periods available to reconstruct your signal, but you have to get it 
right the first time. The rule of thumb is that you would like to get three samples on the 
fastest edge of your signal, one at the base, one in the middle and one at the top, or any 
phase shift with respect to that. This is nothing else than demanding a sampling 
frequency which is four times higher than the Nyquist limit. Looking more closely it 
turns out that a sampling rate three times higher than the Nyquist limit already is 
sufficient. 
The case of the finer sampling in the above example fulfils this requirement. Say that 
your signal just consists of one half-wave of the red sine wave. At whichever phase shift 
of your samples with respect to the half-waves you get a good idea about the shape and 
magnitude of each individual half-wave. 

 
The cost of digitisation rises strongly with the sampling rate, I would say at least quadratic, at 
the leading edge of the technology even more. This is because you have to pay for the research 
and development going into the technologies which facilitate the extension of the available 
upper limits. The rise of cost with the sampling rate is only comparable with the rise of cost in 
the analogue bandwidth which increases as strongly. 
 
The same Nyquist criterion and aliasing problems also arise with spatial frequencies. Better 
CCD chips in digital cameras feature larger number of pixels in the same area in order to be 
able to capture higher spatial frequencies. In low resolution CCD chips aliasing is noticeable in 
digital photographs by the appearance of regular grids or stripes. These days this has become 
rather rare as the available number of pixels per unit area in consumer devices has 
dramatically grown over the years. With the reduction of pixel size the limitation in CCD chips 
most often is due to noise. Cheaper CCD chips feature many pixels of very small area. 
Therefore only a small amount of light is shown on each pixel. In low illumination images the 
electronic noise in the pixels becomes visible. Expensive digital cameras feature much bigger 
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CCD chips and bigger objectives, but not necessarily more pixels anymore. But since the 
individual pixels (and the objectives) are larger they can collect more of the light and 
therefore have a much bigger margin before the electronic noise in the pixels becomes 
significant. 
 
(2) Noise & Interference 
Electronic noise is the uncontrollable fluctuation of your signal with time. It can have many 
sources, some may be reducible by a better layout of the measurement setup, others are 
irreducible. You always will have some level of noise in your measurement. The question is 
how significantly the noise affects your measurement. Look at the two traces of a signal below. 

 
The upper trace has no visible noise on it, the lower trace a substantial noise level. Do you 
think you can reconstruct the original signal from the lower trace? Indeed you can. When you 
fit a sine-wave to it you still would get the frequency, amplitude and phase of the wave with a 
pretty good precision, i.e. a relatively low error. The error becomes low as you have measured 
a reasonably large number of periods to average out the fluctuations on the individual data 
samples. Still the errors on the fit of a sine-wave to the upper trace would be even lower. 
 
The significance of how the noise affects your measurement can be quantified by the signal-
to-noise ratio (SNR), which can be defined as (on a logarithmical scale, as engineers like it): 

SNR = 10 log10 �
𝑉𝑠2

𝑉𝑛2
� 

where Vs and Vn are the root mean square (rms) signal and noise voltages, respectively. An 
rms noise voltage that is the same as that of the signal would lead in this definition to an SNR 
of zero. At this point the signal would be almost buried within the noise and would be at the 
edge of being successfully reconstructed from the measured data. 
  
Two of the many possible sources of noise are fundamental and unavoidable. 
 
Thermal noise (also known as Johnson noise): 
Any resistor always generates a noise voltage. The origin of this noise is the random 
fluctuations in the distribution of electrons in the resistor caused by the thermal movements. 

Signal with significant noise Signal with negligible noise level 
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Above T=0K these movements are inevitable. They become stronger as the temperature 
increases and so the rms amplitude of this noise voltage increases with the temperature. 
 
This noise has a very specific character. It has a flat spectrum (the rms amplitude is the same 
at all frequencies). As a result the amount of noise varies with the bandwidth of the 
measurement. Thus the Johnson noise voltage is: 

𝑉𝑛𝑜𝑖𝑠𝑒(𝑟𝑚𝑠) = �4𝑘𝐵𝑇𝑅𝐵 
Here kB=1.38 × 10-23 JK-1 is Boltzmann’s constant, T is the temperature in  K, R is the resistance 
in Ohms and B is the bandwidth in Hz. Because of this bandwidth dependent behaviour the 
irreducible noise of a device often is quoted in units of μV / Hz1/2. The user can calculate the 
noise present in the application once its bandwidth is defined. 
 
Current noise (also called shot noise): 
An electric current is not a continuum. It is made up of the flow of many discrete electrons. 
Therefore there is a noise contribution due to the statistical fluctuations in the number of 
electrons passing a barrier in a component. There is a major difference to Johnson noise: if 
there is no current flowing then there is no shot noise! Quantitatively the shot noise is:  

𝐼𝑛𝑜𝑖𝑠𝑒(𝑟𝑚𝑠) = �2𝑞𝐼𝑑𝑐𝐵 
Here q is the charge on an electron, Idc is the steady current and B, again, is the bandwidth in 
Hz. The formula is only actually true for statistically independent electrons, such as those 
diffusing through a barrier in a junction diode. Where there are correlations between the 
motions of the electrons, like in a resistor, the current noise is significantly reduced, often 
negligible. 
 
Interference: 
Changing electric and magnetic fields in the environment of your measurement setup will 
influence the flow of charges in a circuit, this is called interference. Aerial communication 
(mobile phones, wireless, Radio and TV aerials) works this way. But when you measure a 
(small) signal you want your cables not to act as an antenna and pick up RF (radio frequency) 
signals which would disturb your signal to measure as an additional noise component. 
The question is, how do you stop your cables or traces on a printed circuit board acting like a 
radio aerial when you don’t want it to? The fields couple to circuits in different ways. 
 
Capacitive coupling: Noise can be coupled into a circuit via stray electric fields. The charge 
carriers in a conductor will flow in response to an electric field, in order to reduce it in the 
centre of the conductor to zero. Capacitive coupling therefore can be removed by surrounding 
a cable by a conducting shield layer which is well grounded. This is what is done in a coaxial 
cable. 

http://www phy davidson edu/StuHome/phstewart/IL/spee
 

Coaxial cable 
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Inductive coupling: Noise can also be coupled into a circuit via stray magnetic fields. This 
coupling happens via any loop created in a wire. And loops can crop up where you don’t expect 
them! Most common and annoying are so-called ground loops. They occur when you make a 
mistake in the layout of your measurement setup and provide two or more paths for your 
ground or return current (by ignorance or by accident...). The following picture shows such a 
situation: 

There are several paths to the ground. Hence there are loops which pick up induced signals. 
These could be 50Hz pick-up from the mains as well as any RF signals. This has to be avoided! 
The layout of the setup has to be changed to a single connection to the main ground point and a 
star-like distribution of the ground to the locations where it is needed, to avoid internal loops 
as well. A fixed version of the setup above is shown here: 

 
 
Coaxial wires are expensive and their connectors are space consuming. Often a much cheaper 
and space effective solution to transmit many parallel signal lines is sufficient: twisted pair 
cables. The two leads of a signal are twisted in regular short spirals with equal loop sizes.  
The current induced in one loop is cancelled by the next, leaving only small residuals along the 
line. 
 

 
 

Twisted pair 

Problem: this circuit 
will pick-up noise,  
such as 50Hz from 
the mains and RF 
noise from the air 

Ground loops 
due to multiple 
ground points. 

Single ground point 
made with thick 
Copper braid. 

Solution: here the 
ground loops have 
been eliminated. 


