
Lecture 15, 19th October 2012 

Electronics Methods, Semester 1 

Digital Signal Processing:  
In the last lecture we looked at how to convert an analogue signal into digital form. While 
users of CDs, MP3s or online videos may appreciate why this is useful for media contents, we 
need to think about why one would do this with experimental data despite the losses incurred. 
The answer lies in the ever increasing number of ways to manipulate digital data on a 
computer. Here a few of them will be introduced. 
 
Contents: 

• Why do off-line digital data analysis? 
• Filters and transforms 
• An example non-linear filter: the median filter 

 
Off-line digital data analysis: 
You have seen that filters can be built to manipulate analogue signals. So, why bother to first 
digitize them with a loss of information and only later manipulate them on a computer?  
 
It is often sensible to record data in digital form 

• Some data is naturally digital 
• Digital data is more robust to noise (only “0”s and “1”s are recognised) 
• Renders analysis by computer possible (see below why this may be of advantage) 

 
With an on-line (“live”) treatment of analogue data you may just get one shot at doing what 
you want. If you make a mistake your data is corrupted, likely beyond recovery. It is better to 
record your raw data and separate the analysis step from the recording. 
 
Digital memory is much cheaper and faster in recording and playback than analog data 
storage. It pays to make use of it! 
 
Once the data is digitized and recorded it can be analysed repeatedly. Different approaches 
can be tried until an appropriate method is found. Later insight, whether theoretical, 
experimental or methodical, can inspire people to return to old data to re-examine it with new 
methods or correction procedures. 
 
Digital data: 
The process of manipulating digital data is called digital signal processing (DSP). We now 
will take a few elements of an example data set and think about what we might want to do 
with it. Each box below is one data sample rather than one bit. So we ignore the issue of how 
the data in each box is represented in binary form. 

 
The digital data above is a series of discrete samples 

𝑦𝑛 = 𝑦(𝑛∆) where    𝑛 = ⋯ ,−3,−2,−1, 0, 1, 2, 3,⋯ 
Δ is the time interval between samples and so 1 ∆�  is the sampling rate. Remember, the 
Nyquist frequency is: 

𝑓𝑐 =
1
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This is the highest frequency that can be represented in a data set sampled at rate 1 ∆� . 
Now we can take a look at something that you might want to do with this data set.  
 
Example: simple smoothing 
Some sources of extraneous noise may provide much faster changes than the signal you want 
to measure. In this case it might be of advantage to average neighbouring data elements to 
smooth out the noise spikes. This is done in the plot below showing a time-variant recording 
of a voltage measurement. The noisy signal is subjected to an algorithm which averages each 
pixel with the three pixels taken before and the three pixels taken afterwards. You see that: 

• The random noise is reduced in favour of the underlying signal. 
But this comes at a significant price: 

• The highest spatial frequency that can be represented is also reduced. The algorithm 
works like a crude form of low-pass filtering and the waveform of the signal is 
significantly distorted. Still one correctly gets the characteristic parameters of 
amplitude and frequency and a wave-form which is free of the fast spikes. 

 
 
It is helpful to understand this in more detail. We are thinking about this filter exclusively in 
the time domain. The raw data is recorded in the array (y) with index n. Each yn is a data 
sample where n decodes the time stamp of the recording. In the averaging algorithm above 7 
successive yi around a centre yn are processed, data sample for data sample, and the result is 
stored in a new array (z) as element zn. What happens mathematically is the following:  

𝑧𝑛 = 𝛼𝑦𝑛+3 + 𝛼𝑦𝑛+2 + 𝛼𝑦𝑛+1 + 𝛼𝑦𝑛 + 𝛼𝑦𝑛−1 + 𝛼𝑦𝑛−2 + 𝛼𝑦𝑛−3   with    𝛼 = 1
7
 

Or generally for N-element smoothing: 

𝑧𝑛 =
1
𝑁

� 𝑦𝑘

𝑛+(𝑁−1)
2�

𝑘=𝑛−(𝑁−1)
2�

 

Average of 
7 samples 

Clean signal 

Signal + 
Noise 
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This is a very simple filter and improvements immediately come to mind. You could imagine 
that element zn should be more strongly based on element yn than on elements further away. 
Ideally, rather than weighting every element by (1/N) the weightings would be a function of 
the index k. When k=n the weighting is quite close to 1. For k very different from n a sensible 
smoothing filter would have a low weighting. 
 
Still this is a rather simplistic approach. In general filters can be arbitrarily complicated 
algorithms. 
 
Example: sophisticated filtering 
We are looking at a filter which can be best understood in the frequency domain. In the lecture 
on op-amp based filters Bode Plots were introduced and the idea was discussed that 
sometimes you may want to remove some frequency ranges from a signal. In the example 
below the input signal (top trace) is composed from three sine-waves with different 
frequencies. In the Fourier Transform image graph (bottom right plot) one can see the three 
spikes corresponding to the three frequencies of the input signal (750Hz, 2250Hz and 
3000Hz).  
 

 
 
By choosing an appropriate filter (see its gain displayed in the bottom left plot) it is possible 
to select a single frequency (750Hz) and attenuate the other two almost completely (lower 
trace). This filter employs a cut-off frequency of 750Hz and works extremely well to suppress 
the two higher frequencies (note the amplitudes in the Fourier Transform plot). The price you 
pay is that it makes a complete mess of the phase of the signal (bottom middle plot). 
 
Example: Finite difference filters 
One way to design a digital filter is to begin with an electrical circuit that you might use to 
filter analogue data. Think about how you could implement that circuit in the form of an 
expression for manipulating digital data. Because we can use either complex numbers or 
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differentials to describe these filters, the connection between the time domain and the 
frequency domain might become a little more obvious for this example. 
 
Low-pass filters: The most basic low-pass filter we have looked at (and you have built in the 
lab) involves just a resistor and a capacitor. Components of the input signal with 𝜔 > 1

𝑅𝐶�  
are strongly attenuated. We are going to render the behaviour of this circuit as an equation 
that could easily be applied to a series of discrete samples. This involves writing derivatives as 
differences. The problem solving technique whereby differential equations are rewritten as 
differences is called the finite difference approach. 

 
In complex description you would analyse this circuit as (see lecture 7): 
 

𝑉(𝑡) =
𝑉𝑖𝑛(𝑡)𝑍2
𝑍1 + 𝑍2

= 𝑉𝑖𝑛(𝑡)
1 − 𝑖𝜔𝑅𝐶

1 + 𝜔2𝑅2𝐶2
 

At high frequencies the capacitor strongly attenuates V(t). 
 
However this circuit can also be dealt with in terms of time. For a finite difference treatment 
the following equivalent description is the more useful approach. The voltage across R is (Vin – 
V) so: 

𝐼 = 𝐶
𝑑𝑉
𝑑𝑡

=
𝑉𝑖𝑛 − 𝑉
𝑅

 

𝑅𝐶
𝑑𝑉
𝑑𝑡

+ 𝑉 = 𝑉𝑖𝑛 
 
Using the finite difference approach with the following assignments: 

Vin = y (the input signal) 
V = z (the filtered signal) 
RC = T (the time constant of the filter) 
dt = Δ  (the infinitesimal sample spacing) 
n = time step index 

the above becomes: 
𝑇
∆

(𝑧𝑛 − 𝑧𝑛−1) + 𝑧𝑛 = 𝑦𝑛 

𝑧𝑛 �1 +
𝑇
∆
� = 𝑦𝑛 +

𝑇
∆
𝑧𝑛−1 

𝑧𝑛 =
1

1 + 𝑇
∆�
𝑦𝑛 +

𝑇
∆�

1 + 𝑇
∆�
𝑧𝑛−1 

leading to: 

𝑧𝑛 = (1 − 𝛼)𝑦𝑛 + 𝛼𝑧𝑛−1 with 𝛼 =
𝑇
∆�

1+𝑇 ∆�
 

The transformed sample zn only depends of the raw sample yn and the previous transformed 
sample zn-1. Apart from starting condition for element z0 the implementation of this equation 
is straight forward and a single pass over the data array (y) would be sufficient to fill the 
output array (z).  

R 

C 
Vin(t) V(t) 
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High-pass filters: Here the positions of capacity and resistor are swapped. The filter can be 
transformed into the time domain using the finite difference technique in an analogous way. 
The result is only marginally more complicated: 
 

𝑧𝑛 = 1
2

(1 + 𝛼)𝑦𝑛 −
1
2

(1 + 𝛼)𝑦𝑛−1 + 𝛼𝑧𝑛−1  with 𝛼 =
𝑇
∆�

1+𝑇 ∆�
 

 
Fourier transforms and convolutions: 
The first example given above was a simple smoothing filter implemented in the time domain. 
It involved taking the average of seven elements. This is an example of a convolution. In 
general the convolution of two time-dependent functions h(t) and g(t) is defined as: 

𝑘(𝑡) = 𝑔(𝑡) ∗ ℎ(𝑡) = � 𝑔(𝜏)ℎ(𝑡 − 𝜏)𝑑𝜏
+∞

−∞
 

where the integral of the product of the two functions is calculated with one signal inverted in 
time and phase shifted through the other. This is a complicated but very powerful and often 
needed operation. 
 
The convolution, expressed above as an integral, can be re-expressed as a summation. This 
may make the relationship to the smoothing filter more obvious. Say the signal s(t) you have 
measured is represented by its N sampled values sj which were taken at equal time intervals. 
The filter you want to apply to the data is described by a discrete set of M+1 numbers rk (this 
is sometimes called the kernel of your filter). The discrete convolution of a data sample sj 
with a kernel of length M+1 is the sum: 

(𝑟 ∗ 𝑠)𝑗 = � 𝑠𝑗−𝑘𝑟𝑘

𝑀
2�

𝑘=−𝑀 2�

 

That means that for the simple smoothing example plotted above the kernel has a size of M=6 
and values of rk = 1/7 for k= -3, -2, -1, 0, 1, 2, 3 and zero everywhere else. 
 
Convolutions carried out this way are computationally very expensive. There exists a much 
more efficient way to carry out these convolutions. Let’s say that H(f), G(f) and K(f) are the 
Fourier transforms of the time-dependent functions h(t), g(t) and  k(t) above, i.e. the 
corresponding functions in the frequency domain: 

𝑋(𝑓) = � 𝑥(𝑡)𝑒−2𝜋𝑖𝑓𝑡𝑑𝑡
+∞

−∞
 

Or for N discrete samples: 

𝑋(𝑘) = �𝑥(𝑛)𝑒
−𝑗2𝜋𝑘𝑛

𝑁�
𝑁−1

𝑛=0

 

It turns out that the simple product of the Fourier transforms of g(t) and h(t) equals the 
Fourier transform of their convolution k(t). This is known as the Convolution theorem of the 
Fourier transformation: 

𝐾(𝑓) = 𝐺(𝑓)𝐻(𝑓) 
 
i.e. a convolution in the time domain is the equivalent of a multiplication in the frequency 
domain. 
 
As there exists a very efficient algorithm to compute the Fourier transform on a finite number 
of data samples, the fast Fourier transform (FFT), it is much more efficient to transform two 
signals sampled in the time domain into the frequency domain using the FFT, multiply them in 



Lecture 15, 19th October 2012 

Electronics Methods, Semester 1 

the frequency domain and FFT back into the time domain than to actually compute their 
convolution. The FFT algorithm amounts to reordering the elements of one array (reversing 
the address bit sequence) and then summing up the elements with weighting factors. 
 
To summarise: 

• Applying filter equations to data is a convolution. This is computationally an expensive 
operation. 

• As described by the convolution theorem: a convolution in the time domain is 
equivalent to a multiplication in the frequency domain. This is much easier to 
implement. 

• The fast Fourier transform algorithm eases very much the transformation between 
time and frequency domain. It outperforms the direct calculation of a convolution that 
much that, via the convolution theorem, it becomes the preferred tool to perform 
convolutions. 

 
Non-linear filters: e.g. median filter: 
Above filters have been introduced in both the time domain and the frequency domain. And it 
has been shown how they can be implemented in digital form. All of these filters share a 
common behaviour: they are all linear filters. Linear filters are underpinned by Fourier 
theory and the convolution theorem. There is another class: that of non-linear filters. These 
are underpinned by set theory and cannot be implemented via a convolution. They can be very 
useful for minimizing the effect of some kinds of noise. 

• Linear filters are ideal for situations when the noise and the important part of the 
signal have very different frequencies. 

• For some transducers, noise is impulsive. That means sharp spikes corrupt the data. In 
this case the noise includes all frequencies. 

• Impulsive noise is best removed by a non-linear filter. These remove data at a particular 
spatial location rather than spatial frequency. 

• Here we take the example of a median filter. This replaces each data element by the 
median of it and its closest neighbours. This means that elements with extreme values 
are ignored altogether. 

To study its effect we employ again a noisy square wave like in the beginning of this lecture 
(see the waveforms below) and observe how it transforms the data in a very different way 
than the linear averaging algorithm. 
 
The periodic square signal is plotted in the time domain again and is visibly affected by noise 
spikes. Again the raw data are recorded in the array (yn) with indexing n. The result of the 
median filter is stored in the array (zn) indexed in the same way. A median filter then can be 
implemented as: 

zn = median(yn+1 , yn , yn-1) 
   
Or more generally for a window of N samples as: 
 

zn = median(yn+(N-1)/2 , … , yn , … , yn-(N-1)/2) 
 
The result (third trace in the plot below) is impressive. The noise is almost gone and not only 
the amplitude and frequency can be reconstructed but also the shape of the waveform is 
maintained. This filter is much better suited to remove this spiky kind of noise from the signal 
than the simple averaging method in the beginning of the lecture. 
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This lecture course has covered quite a breadth of topics: from digital logic, via analogue 
linear electronics, first for DC then extended to AC circuits, moving to non-linear components 
and their use in operational amplifiers and finally closing the circle with analog-to-digital 
conversion and a glimpse on digital signal processing. Naturally this course had to cut short in 
the depth of the topics. But hopefully you will have found it educative, giving you a good start 
in this field, whether you continue to use it in the future or not. Even if you do not deepen 
further your knowledge in electronics, at least this course should have given you some 
understanding what your colleagues are talking about when the discussion comes to the 
implementation of your data acquisition project into a real-life system. And you should have 
got some insight in the internal processes taking place in modern consumer electronics. 

Median of 
7 samples 

Clean signal 

Signal + 
Noise 


