

- Physics of gaseous chambers for charges particle tracking
- Types of tracking chambers
- □ not covered: solid state detectors
 - \rightarrow see lecture of Richard Bates

Particle Physics Detectors, 2010

Stephan Eisenhardt

III/2

Momentum Measurement I

Multiple Scattering

□ Charged (z) particles suffer elastic Coulomb scatterings from nuclei (Z): $\frac{d\sigma}{d\Omega} = 4zZr_e^2 \left(\frac{m_e c}{\beta p}\right)^2 \frac{1}{\sin^4 \theta/2}$ Rutherford formula Gaussian \Box Average scattering angle: $\langle \theta \rangle = 0$ $\square \text{ Multiple Scattering:} \quad \text{width} = \theta_0 = \sqrt{\left\langle \theta_{plane}^2 \right\rangle} = \theta_{plane}^{RMS} = \frac{1}{\sqrt{2}} \theta_{space}^{RMS}$ sin-4(0/2 □ In thick material layer: θ_0 $P(\theta_{plane}) = \frac{1}{\sqrt{2\pi}\theta_{0}} \exp\left\{-\frac{\theta_{plane}^{2}}{2\theta_{0}^{2}}\right\}$ θ_{plane} 0 **Tr**plane θ_{plane} $\theta_0 = \frac{13.6 \, MeV}{\beta cn} z_1 \left\{ \frac{L}{X} \right\} \left\{ 1 + 0.038 \ln \left(\frac{L}{X} \right) \right\}$ □ Gaussian shape for central 98% of distribution:

- X_0 = radiation length
- accuracy \leq 11% for 10⁻³ < L/X₀ < 100

III/4

Momentum Measurement II

Multiple scattering contributes to momentum measurement error:

$$\sigma(p)^{MS} = p \sin \theta_{RMS}^{plane} \approx p \cdot 0.0136 \frac{1}{p} \sqrt{\frac{L}{X_0}}$$

$$\frac{\sigma(p)^{MS}}{p_T} = \frac{0.0136 \sqrt{\frac{L}{X_0}}}{0.3BL} = 0.045 \frac{1}{B\sqrt{LX_0}} \quad \text{independent of p!}$$

$$\Box \text{ Total measurement error:} \qquad \left(\frac{\sigma(p)}{p_T}\right)^2 = a_{meas.}^2 \cdot p_T^2 + b_{MS}^2$$

$$\Box \text{ Experiments with solenoid magnet:}$$

 $p_T = p \sin \theta$

Ar (X₀=110m) $\frac{\sigma(p)}{p_T}^{MS}$ L=1m, B=1T p_T ≈0.5%

Example:

measurement error:

$$\sigma(\theta)^{meas.} = \frac{\sigma(z)}{L} \sqrt{\frac{12(N-1)}{N(N+1)}}$$

Optimum N: trade measurement resolution against material budget

 $\underline{\sigma(p)}_{\approx} \underline{\sigma(p_T)}$ □ In practice often: p_T Particle Physics Detectors, 2010

Stephan Eisenhardt

III/5

Landau Fluctuations

- mean energy loss: <dE/dx>
- $\Box \quad \Delta E = energy \ loss \ deposited$ in a layer of finite thickness
- □ For thin layers and gases (low density):
 - ∆E has large fluctuations!
 - only few collisions, some with high ΔE
 - ∆E distribution has large contributions at high losses
 → "Landau tails"
 - first parameterised by Landau in 1944
 - subsequently improved
- □ For many measurements in a detector:
 - truncated mean of ∆E as estimate for <dE/dx>

Energy loss ΔE in 1.5cm Argon +7% CH₄

Gaseous Ionisation Detectors

Operation Modes

Reminder:

- Ionisation chamber
 - no multiplication
- Proportional counter
 - Signal proportional to n_{primary}
 - dE/dx measurement
 - localised avalanche
- Limited proportional / Streamer mode
 - secondary avalanches along wire
 - high gain
- Geiger-Müeller counter
 - avalanche along full wire

Fig. 6.2. Number of ions collected versus applied voltage in a single wire gas chamber (from *Melissinos* [6.1])

Particle Physics Detectors, 2010

Signal Shape

- **Cylindrical proportional chamber:** with electrostatic energy of field $W=1/2 ICV_0^2$ (I = cylinder length)
 - a = wire radius
 - b = chamber radius
 - r_c = critical radius, where avalanche starts
- Electron avalanche and drifting ions induce signals on anode:
 - with different strength: ions dominate: $V^{-}/V^{+} \sim 0.01$!!
 - on different time scales: e: O(10ns), ions: O(100ns)
- Drift velocity v: (using V⁺ only)

$$v = \frac{dr}{dt} = \mu E(r) = \frac{\mu CV_0}{2\pi\varepsilon_0} \frac{1}{r}$$

$$\Rightarrow r(t) = \left(a^2 + \frac{\mu C V_0}{\pi \varepsilon_0}t\right)^{1/2}$$

Time development of pulse:

$$V(t) = \int_{a}^{r(t)} \frac{dV}{dr} dt = -\frac{q}{2\pi\varepsilon_0 l} \ln \frac{r(t)}{a}$$
$$= -\frac{q}{4\pi\varepsilon_0 l} \ln \left(1 + \frac{\mu C V_0}{\pi\varepsilon_0 a^2} t\right)$$

Particle Physics Detectors, 2010

____'

e.g. 10 μm

e.g. 10 mm

e.g. 1 μm

$$V^{-} = \frac{-q}{lCV_{0}} \int_{a+r_{c}}^{a} E(r)dr = \frac{-q}{2\pi\varepsilon_{0}l} \cdot \ln\frac{a+r_{c}}{a}$$

 α

$$V^{+} = \frac{q}{lCV_{0}} \int_{a+r_{c}}^{b} E(r)dr = \frac{q}{2\pi\varepsilon_{0}l} \cdot \ln\frac{b}{a+r_{c}}$$

Choice of Gas

□ Gas selection:

- noble, inert: Ar, CO₂, He
- high specific ionisation

□ But: secondary emission of electrons

- from de-excitation of UV γ
- new avalanches started
- leads to constant discharges

Example: Argon

- photons with E = 11.6 eV
- produces e⁻ at cathode

□ Quenching needed!!

Particle Physics Detectors, 2010

Quenching

□ Polyatomic gases act as "quenchers":

- C_2H_5OH , CH_4 , C_2H_6 , C_4H_{10} , ...
- Absorption of photons in large energy range by vibration and rotation energy levels
- concentration chosen to limit free path of γ to O(a)
 → UV γ don't reach cathode
 - \rightarrow ions transfer ionisation to quenching gas where energy too small for ionisation...

Possible problems

- dissociation of molecules
 - \rightarrow whiskers on wires
 - \rightarrow breakdown
- coating of wires
 - \rightarrow "aging"

Solutions

- a few 100 ppm of water !?!

Multiwire Proportional Chambers

□ Until about 1970

- mostly optical tracking devices:
 cloud chamber, bubble chamber, spark chamber, emulsions
- slow for data taking and analysis

□ Revolution of 1968

- MWPC invented by Charpak (Nobel prize 1992)
- plane of anode wires act as individual proportional counters

 \Box Typical dimensions: L = 5 mm, d = 1 mm, a_{wire}= 20 μ m

D MWPC:

- fast electronic device
- wire address: 1-dimensional spatial resolution

$$\sigma_x \approx \frac{d}{\sqrt{12}} \ge 300 \,\mu \mathrm{m}$$

- high cost in channels (electronics)
- further improvement on resolution desirable

Particle Physics Detectors, 2010

field and equipotential lines around anode wires

Drift Chambers

Improvement of spatial resolution: Drift Chamber

- large volume with low field region (~constant field): drift
- high field region: gas amplification

□ Time measurement:

- start: scintillator trigger, collider bunches
- stop: arrival time of drift e⁻

Complications:

- Drift velocity
- Diffusion
- Magnetic fields

□ Spatial resolution:

- electronics, ionisation, diffusion
- not limited by cell size
- fewer wires than MWPC electronics, structure cost

T. Bressani, G. Charpak, D. Rahm, C. Zupancic, 1969 First operation drift chamber:

A.H. Walenta, J. Heintze, B. Schürlein, NIM 92 (1971) 373

Particle Physics Detectors, 2010

Drift Velocities

Diffusion

 $=\sqrt{6Dt}$

Drift with no external fields: Diffusion

e⁻ and ions thermalise due to collisions with atoms

$$T_{kin} = \frac{3}{2}kT \approx 35 \text{ meV}$$

linear and volume diffusion coefficient:

$$\sigma_x = \sqrt{2Dt} = \sqrt{2x\frac{D}{\mu E}} \qquad \sigma_L$$

- □ "Cool" gases, e.g. CO₂
 - e^{-} thermal up to E ~ 2kV/cm
 - expect small and isotropic diffusion
- □ "Hot" gases, e.g. Argon
 - e⁻ non thermal at E ~V/cm
 - expect non-isotropic Diffusion, D_L along E-field

Drift in Fields

External fields E and B:

: (mean time between collisions) τ diffusion equation, interested in time-independent solution $\left\langle \frac{d\vec{v}}{dt} \right\rangle = 0 = e\vec{E} + e(\vec{v}_D \times \vec{B}) - \frac{m}{\tau} \vec{v}_D$ $\mu = \frac{e\,\tau}{m} : (\text{mobility})$ $\vec{v}_D = \frac{\mu}{1 + \omega^2 \tau^2} \left[\vec{E} + \omega \tau \frac{(\vec{E} \times \vec{B})}{B} + \omega^2 \tau^2 \frac{(\vec{E} \cdot \vec{B})\vec{B}}{B^2} \right] \qquad \omega = \frac{e\vec{B}}{m} : (\text{cyclotron frequency})$ - B = 0: $\vec{v}_D = \mu \vec{E}$ y

 $v_x = \mu E_x \frac{1}{1 + \omega^2 \tau^2}$ **E** and B perpendicular: $v_{y} = -\mu E_{x} \frac{\omega \tau}{1 + \omega^{2} \tau^{2}}$ α_{I} B $v_z = \mu E_z$ Ē Х

 \Box Lorentz angle α_L : tan $\alpha_L = \omega \tau$

Particle Physics Detectors, 2010

Determination of z-Coordinate

Drift Chamber Geometries

- Potential wires mandatory
- Various drift cell geometries in use:
 - cylinder, square, hexagonal: short drift paths, small B effects
 - closed, open: many vs. few potential wires at cost of homogeneity of E
 - jet (projecting):
 many points along track
 at cost of long drift paths, B effects!
 and complicated E field

Particle Physics Detectors, 2010

Stephan Eisenhardt

III/19

Planar Drift Chambers

Particle Physics Detectors, 2010

Time Expansion Chamber

Particle Physics Detectors, 2010

Time Projection Chamber

□ Allows full 3-dimensional reconstruction & dE/dx measurement: "el. Bubble Chamber"

Particle Physics Detectors, 2010

III/22

Thin Gap Chambers

□ Thin Gap chambers (TPC)

- saturated mode
- thin insulator prevents sparking
- limited by graphite resistitivity
- large gain 10⁶

Cheap

Large area

fast, 2 ns risetime

 \rightarrow Muon chambers

Resistive Plate Chambers

Tracking for the New Millenium

- □ 1980s and 90s:
 - golden area of gaseous wire chambers
 - e⁺e⁻ colliders: LEP, SLC, B-factories
 - hadron colliders/fixed target: CDF, NA48/49, H1/ZEUS

□ LHC (and ILC is not too far as well):

- bunch crossing rate 40 MHz / 25 ns
- Luminosity 10³⁴ cm⁻² s⁻¹
- ~ 30 overlapping events per bunch crossing
- 1900 charged + 1600 neutral particles
- □ Are we up for this new challenge?
 - need faster tracking detectors
 - need higher rate capabilities
 - need larger areas, lower cost

Simulated $H \rightarrow 4\mu$ event in ATLAS

Micro-Strip Gas Chambers I

Micro-Strip Gas Chambers

- (A. Oed, NIM A 263 (1988) 352)
- thin metal (Au) strips on insulating (glass) surface
- photolithography for production
- mechanically small and precise
- relatively cheap

Gas multiplication

- fast ion drift time, reduced built-up of charge
- high rate capability ~10⁶ /cm² s

Micro-Strip Gas Chambers II

□ Rate capability:

Discharges and Ageing

Discharges:

- If gain > 10⁷-10⁸: Raether's limit growth of filament
- Passivation needed: non-conductive protection of cathode edges

Particle Physics Detectors, 2010

□ Ageing:

- production of polymeric compounds in avalanches sticking to the electrodes or to the insulator
- careful selection of materials and gas
- 10 yrs LHC or ~0.1 C/cm²

Micro – Anything Goes

□ Micro-Gap Chamber:

Lots of Micro-maniacs are having fun!

- MSGC, micro-wire, micro-dot
- compteur à trous (CAT), micro-CAT/WELL
- micro groove

- gas electron multiplier (GEM)

Stephan Eisenhardt

Micro gap wire chamber

Gas Electron Multiplier

GEM - Gain and Rates

Double-GEM + PCB:

- very high rate: 5.10⁷ /cm² s
- reasonable gain: > 10^4

GEM+MSGC

Example: HERA-B experiment

- 184 chambers of area 25x25 cm²
- particle flux 2-25 kHz/mm²
- (outer-inner part)
- radiation: 1Mrad/year

Particle Physics Detectors, 2010

Particle Physics Detectors, 2010