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Tracking
of

Charged Particles

Physics of gaseous chambers for charges particle tracking
Types of tracking chambers

not covered: solid state detectors
→ see lecture of Richard Bates
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Tracking Detectors
Tracking in 1932: Cloud Chamber
(detection of antimatter)

Tracking in 2001: STAR TPC
(study of Quark-Gluon-Plasma)

~5 cm 200 cm

2000: L3 Higgs candidate~1994: DELPHI B meson
τB ≈ 1.6 ps
L = βγ cτ

≈ βγ ⋅ 480 μm
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Momentum Measurement I
Sagitta s: measures momentum

Need at least 3 measurements: 

For N equidistant measurements (Glückstern, NIM 24 (1963)381)

improves with BL2!! and N1/2

Examples:
- pT=1GeV/c, L=1m, B=1T - pT=100GeV/c, L=5m, B=1.5T

σ(x)=200μm, N=10 : σ(x)=1.5mm, N=6 :

Lorentz force:
F = q B v
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Multiple Scattering
Charged (z) particles suffer elastic Coulomb scatterings from nuclei (Z):

Average scattering angle:

Multiple Scattering:    width =
In thick material layer: 

Gaussian shape for central 98% of distribution:
– X0 = radiation length
– accuracy ≤ 11% for 10-3 < L/X0 < 100
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Momentum Measurement II
Multiple scattering contributes to momentum measurement error: 

independent of p!
but X0 ∝ N

Total measurement error:

Experiments with solenoid magnet:

measurement error:

Optimum N: trade measurement resolution against material budget

In practice often:
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Ionisation of Gases
Charged particles ionise the atoms of a gas:

– X+p → X* + p excitation
– X+p → X+ + p + e- ionisation

δ-rays: e- with enough energy to create new e--ion pairs:

Number of created e--ion pairs:

– ΔE = total energy loss
– Δx = distance traveled
– Wi = effective <energy loss> per pair  ≈ 30 eV

Example: CO2
– ΔE    ≈ 3 keV  cm-1

– ntotal ≈ 100 e--ion pairs / cm

primary ionisation

secondary ionisation
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data:  Harris et al. (1977)
dotted curve: Landau(1944)
dashed curve: Maccabee & Papworth(1969) 

(Landau’s method)
solid curve: Allison and Cobb (1980)

Landau Fluctuations
mean energy loss: <dE/dx>

ΔE = energy loss deposited
in a layer of finite thickness

For thin layers and gases (low density):
– ΔE has large fluctuations!
– only few collisions, some with high ΔE
– ΔE distribution has large contributions at high losses

→ “Landau tails” 

– first parameterised by Landau in 1944
– subsequently improved

For many measurements in a detector:
– truncated mean of ΔE as estimate for <dE/dx>

Energy loss ΔE in 1.5cm Argon +7% CH4

π- e-



III/8Particle Physics Detectors, 2010 Stephan Eisenhardt

+V0

GND

Gaseous Ionisation Detectors
Reminder: Basic Principle

Need Gas Amplification:
a) primary e- drift towards anode
b) with gained Tkin e- ionises further atoms → avalanche
c) e- and ion cloud drift apart
d) e- cloud surround anode wire, induces signal
e) ion cloud withdraws from anode on larger time scale

and induces signal
– close to wire: large E ≥ 1kV/cm
– gas amplification A with gain up to 106

exponential gain

α = Townsend coefficient (e--ion pairs/cm)
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space
charge

V

Q
 [

e]
Operation Modes

Ionisation chamber
– no multiplication

Proportional counter
– Signal proportional to nprimary

– dE/dx measurement
– localised avalanche

Limited proportional / Streamer mode
– secondary avalanches along wire
– high gain 

Geiger-Müeller counter
– avalanche along full wire

Reminder:
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Signal Shape
Cylindrical proportional chamber: with electrostatic energy of field W=1/2 lCV0

2 (l = cylinder length)
– a = wire radius e.g. 10 μm
– b = chamber radius e.g. 10 mm
– rc = critical radius, where avalanche starts e.g. 1 μm

Electron avalanche and drifting ions
induce signals on anode:

– with different strength:   ions dominate:    V-/V+ ~ 0.01  !!
– on different time scales:   e-: O(10ns), ions: O(100ns)

Drift velocity v: (using V+ only)

– μ = mobility

Time development of pulse:
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Choice of Gas
Gas selection:
– noble, inert: Ar, CO2, He
– high specific ionisation 

But: secondary emission of electrons
– from de-excitation of UV γ
– new avalanches started
– leads to constant discharges

Example: Argon
– photons with E = 11.6 eV 
– produces e- at cathode

Quenching needed!! Ar *
11.6 eV

Cu

e-

cathode
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Quenching
Polyatomic gases act as “quenchers”:
– C2H5OH, CH4, C2H6, C4H10, …
– Absorption of photons in large energy range

by vibration and rotation energy levels
– concentration chosen to limit free path of γ to O(a) 

→ UV γ don’t reach cathode
→ ions transfer ionisation to quenching gas

where energy too small for ionisation…

Possible problems
– dissociation of molecules

→ whiskers on wires
→ breakdown

– coating of wires
→ “aging”  

Solutions
– a few 100 ppm of water !?!
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Multiwire Proportional Chambers
Until about 1970
– mostly optical tracking devices:

cloud chamber, bubble chamber, spark chamber, emulsions
– slow for data taking and analysis

Revolution of 1968
– MWPC invented by Charpak (Nobel prize 1992)
– plane of anode wires act as individual proportional counters

Typical dimensions: L = 5 mm, d = 1 mm, awire= 20 μm

MWPC:
– fast electronic device
– wire address: 1-dimensional spatial resolution

– high cost in channels (electronics)
– further improvement on resolution desirable

m300
12

μσ ≥≈
d

x

field and equipotential lines around anode wires
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Drift Chambers

anode

TDC
Start
Stop

DELAY
scintillator

drift

low field region
         drift

high field region
         gas amplification

First studies:
T. Bressani, G. Charpak, D. Rahm, C. Zupancic, 1969
First operation drift chamber:
A.H. Walenta, J. Heintze, B. Schürlein, NIM  92 (1971) 373 

Improvement of spatial resolution: Drift Chamber
– large volume with low field region (~constant field): drift
– high field region: gas amplification

Time measurement:
– start: scintillator trigger, collider bunches
– stop: arrival time of drift e-

Complications:
– Drift velocity
– Diffusion
– Magnetic fields

Spatial resolution:
– electronics, ionisation, diffusion 
– not limited by cell size
– fewer wires than MWPC electronics, structure cost
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Drift Velocities
Range of vD:
– 50 mm/μs --- fast gases (Ar, …)
– 5 mm/μs --- slow gases (CO2)

(F. Sauli, CERN 77-09)

Argon-
Methane

Argon-
Isobutane

(A. Breskin et al. NIM 124 (1975) 189)

m
m

/μ
s

cm
/μ

s

V/cmV/cm / mm Hg
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Diffusion
Drift with no external fields: Diffusion

– e- and ions thermalise due to collisions with atoms

– linear and volume diffusion coefficient:

“Cool” gases, e.g. CO2
– e- thermal up to E ~ 2kV/cm
– expect small and isotropic diffusion

“Hot” gases, e.g. Argon
– e- non thermal at E ~V/cm 
– expect non-isotropic Diffusion, DL along E-field
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Drift in Fields
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– diffusion equation, interested in time-independent solution
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Determination of z-Coordinate
crossed wires (2-dim chamber, usually small angle):
segmented cathode readout

Differential timing:
– measure arrival time at both wire ends
– time difference gives z-coordinate

Charge division:
– resistive anode wire (Carbon R = 2kΩ/cm)
– charge division proportional to wire length L:
– reached accuracy:

down to:

Stereo-Layers:
– alternated with axial layers
– γ = ±2-6°
– match signal hits of layers
– occupancy limit: combinatorics!

nsm2.0with ≈∝ signalsignaltz vvσσ

BA

A

QQ
QLz
+

=

Lz ⋅= %4.0σ

Example: JADE drift chamber
– L = 234cm
– σz = 1.6cm = 0.7%·L

Example: TASSO drift chamber
– L = 350cm
– γ = ±4°
– σz ~ 3mm

y

L

QBQA

track

y
L

track

CFD CFDΔT

Example: OPAL drift chamber
– σt = 100 ps
– σz = 4cm
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Drift Chamber Geometries

%45.0%15.0 +⋅= T
T

P P
P

T
σ

Potential wires mandatory
Various drift cell geometries in use:

– cylinder, square, hexagonal:
short drift paths, small B effects

– closed, open:
many vs. few potential wires
at cost of homogeneity of E

– jet (projecting):
many points along track
at cost of long drift paths, B effects!
and complicated E field

Example: BaBar
– 40 layers
– resolution: 

TASSO
open

ARGUS
closed

JADE
jet
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Planar Drift Chambers
Geometry optimisation:

– want constant drift velocity
→ choose gas with little variation vD(E)
→ linear space - drift time relation

– shape E field
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Time Expansion Chamber
L3:

– Cool gas: CO2-i-C4H10
– small diffusion
– grid wires to prevent ions

entering the drift volume
– very good time resolution
– maintain drift velocity to ‰ level
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Time Projection Chamber
Allows full 3-dimensional reconstruction & dE/dx measurement: “el. Bubble Chamber”
– big gas cylinder (ALEPH: Ø 3.6M, L=4.4 m, Ar-Methane @ 10bar)
– E and B field parallel: Lorentz force vanishes
– B field reduces diffusion
– End caps equipped with MWPC
– x-y from wires and segmented cathodes
– z from drift time
– dE/dx information

→ particle identification, still very difficult for systematics

Long drift distances
– need excellent gas quality
– precise calibration of vD

Space charge problem:
– from positive ions entering drift volume
– solution: gating (needs trigger)

ALEPH resolution: (isolated leptons)
σRφ = 173 μm
σz = 740 μm

Gate open Gate closed

ΔVg = 150 V

ALEPH TPC
(ALEPH coll., NIM A 294 (1990) 121,

W. Atwood et. Al, NIM A 306 (1991) 446)
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Thin Gap Chambers
Thin Gap chambers (TPC) 

– saturated mode
– thin insulator prevents sparking
– limited by graphite resistitivity
– large gain 106

– fast, 2 ns risetime

Cheap
Large area
→ Muon chambers

G10 (support)

cathode pads ground plane

graphite

3.
2 

m
m

 

2 mm
4kV

50 μm

Gas: 
CO2/n-pentane 

(≈ 50/50)
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Resistive Plate Chambers
Single-Gap RPC:

– close to streamer mode
– fast time dispersion (1…2 ns)
– rasonable rate capabilities:

up to 1 kHz/cm2

– cheap

Double-Gap and Multi-Gap RPC:
– improves efficiency and timing

2 
m

m bakelite
(melamine
 phenolic laminate)

pickup strips

10 kV

spacer

15 kV

Gas: C2F4H2, (C2F5H) 
+ few % isobutane

used for:
LHCb muon system
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Tracking for the New Millenium

1980s and 90s:
– golden area of gaseous wire chambers
– e+e- colliders: LEP, SLC, B-factories 
– hadron colliders/fixed target: CDF, NA48/49, H1/ZEUS

LHC (and ILC is not too far as well):
– bunch crossing rate  40 MHz / 25 ns
– Luminosity 1034 cm-2 s-1

– ~ 30 overlapping events per bunch crossing
– 1900 charged + 1600 neutral particles

Are we up for this new challenge?
– need faster tracking detectors
– need higher rate capabilities
– need larger areas, lower cost

Simulated H → 4μ event in ATLAS
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Micro-Strip Gas Chambers I

(A. Oed, NIM A 263 (1988) 352)Micro-Strip Gas Chambers 
– thin metal (Au) strips on insulating (glass) surface
– photolithography for production
– mechanically small and precise 
– relatively cheap

Gas multiplication
– fast ion drift time, reduced built-up of charge
– high rate capability ~106 /cm2 s
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Micro-Strip Gas Chambers II
Rate capability:

Signal shape: (cluster charge)
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Discharges and Ageing
Ageing:

– production of polymeric compounds in avalanches
sticking to the electrodes or to the insulator

– careful selection of materials and gas
– 10 yrs LHC or ~0.1 C/cm2

Discharges:
– If gain > 107-108: Raether’s limit

growth of filament
– Passivation needed:

non-conductive protection of cathode edges
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Micro – Anything Goes
Micro-Gap Chamber:

– MSGC, micro-wire, micro-dot 
– compteur à trous (CAT), micro-CAT/WELL 
– micro groove 
– gas electron multiplier (GEM)

Micomegas:
– Gas: Ar-DME (≈80:20)

2-
6 

m
m

100 μm

51 

9
metal 1
(cathode)

metal 2
(anode)

insulator

gold cathode on ceramic substrate
5 μm wire on 40 μm wide polyimide strips

100 μm

3 
m

m

HV 1

HV 2 

conversion gap

amplification gap
micro grid

copper strips
on kapton foil

317 
μm

70 
μm

E ≈ kV/cm
E ≈ 45 kV/cm

Micro gap wire chamber

Micro gap chamber

Lots of Micro-maniacs are having fun!

… but life is complicated…
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Gas Electron Multiplier
Gas Electron Multiplier

– drift region
– GEM foil (Kapton)
– induction region
– e.g. Printed Circuit Board for collection

Why GEMs?
– for rate capability

when combined with MWPC or MSGC for collection
– Double GEM, Triple GEM

(R. Bouclier et al., NIM A 396 (1997) 50) 

140 − 200 μm

50 − 120 μm
50 μm Kapton 
+ 2 x 5-18 μm Copper

GEM foil:
– shaped to produce

high E field
→ high local e- multiplication
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GEM - Gain and Rates

GEM + MSGC:

Double-GEM + PCB:
– very high rate: 5·107 /cm2 s
– reasonable gain: > 104
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GEM+MSGC
Example: HERA-B experiment 

– 184 chambers of area 25x25 cm2

– particle flux 2-25 kHz/mm2

(outer-inner part)
– radiation: 1Mrad/year  
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