

Photon Detection

- Scintillators
 - organic
 - inorganic
 - wavelength shifters
- Scintillating Fibre Trackers
- Photon detectors
 - photo multipliers
 - diodes
 - position sensitive devices
 - multianode PMTs
 - GAPD (SiPM)
 - hybrid photo diodes

SUPA Graduate Lecture, Oct 2010

Scintillation

- Luminescence:
 - materials absorb energy
 - light, heat, radiation, ...
 - reemit energy
 - as visible light
- □ Fluorescence:
 - reemission within 10⁻⁸ s
 - atomic transitions
- Phosphorescence:
 - slow reemission
 - afterglow

□ Scintillators:

- luminescent
- light output:
 - very fast rise time: O(100ps)
 - exponential decay: O(ns)
 - proportional to energy deposition $~~N_{_0} \propto E$
- □ Usage:
 - time-of-flight measurements
 - trigger counter
 - veto counter
 - tracking
 - energy measurements
 - calorimetry

$$N(t) = N_0 G(\sigma, t) \exp\left(\frac{-t}{\tau_d}\right)$$

Organic Scintillators - Processes

Organic scintillation:

- arises from electrons in π -orbitals

energy level diagram

Molecular states

□ Absorption:

- to singlet states S_{1+}^* (vibration bands)
- Decay (fluorescence):
 - fast internal degradation to S_1 : O(10⁻¹¹ns)
 - radiative decay $S_1 \rightarrow S_0^*$: O(10⁻⁸-10⁻⁹ns)
 - UV to blue wavelengths
 - scintillator is transparent to its own light!!
 - transition to triplet states $S_0^* \rightarrow T_1$ forbidden \rightarrow no re-absorbtion

Decay (phosphorescence):

- non-radiative decay: $S_1 \rightarrow T_1^*$
 - \rightarrow delayed / slow radiative decay:
 - $T_0 + T_0 \rightarrow S_0 + S^* + phonons$
- O(>10⁻⁴ns) visible, IR

Organic Scintillators - Materials

- Organic Crystals:
 - anthracene ($C_{14}H_{10}$), stilbene ($C_{14}H_{12}$), naphthalene ($C_{10}H_8$)
 - high photon, yield but slower
- Organic Liquids:
 - O(3%) solutions of one or more scintillators in solvent
 - absorption by solvent \rightarrow pass of E to scintillator
 - for large volumes

	solvent	secondary fluor	tertiary fluor
Liquid	Benzene	p-terphenyl	POPOP
scintillators	Toluene	DPO	BBO
	Xylene	PBD	BPO
Plastic	Polyvinylbenzene	p-terphenyl	POPOP
scintillators	Polyvinyltoluene	DPO	TBP
	Polystyrene	PBD	BBO
			DPS

- Plastic Scintillators:
 - solid polymerised solutions
 - flexibility: various sizes and shapes
 - relatively cheap

→ most widely used Particle Physics Detectors, 2010

Wave-length shifting:

- shifted re-emission to longer λ
- better match to photo multiplier
- less absorption (by the matrix...)

Scintillator Properties I

Properties:

- low density _
- similar index of refraction
- anthracene (crystal):
 - highest light yield
 - slowest: ~30ns
- plasics:
 - fast: ~1ns
 - lower light yield: ~10-50% of anthracene
- two developers for plasics:
 - Bicron
 - Nuclear Enterprises (gone bust...)
 - was resident to Edinburgh...

Table A6.3 Properties of some organic scintillators							
scintillator	density	index of refraction	wavelength of maximum emission	decay time constant	scintillation pulse height ¹⁾	H/C ratio ²⁾	
	(g/cm ³)		(nm)	(ns)			
Monocrystals O	g/cm	³] n	λ[nm]	τ[ns]			
naphthalene	1.15	1.58	348	11	11 11		
anthracene	1.25	1.59	448	30-32	30-32 100		
trans-stilbene	1.16	1.58	384	3-8	46		
p-terphenyl	1.23		391	6-12	30		
Plastics ³⁾							
NE 102 A	1.032	1.58	425	2.5	65	1.105	
NE 104	1.032	1.58	405	1.8	68	1.100	
NE 110	1.032	1.58	437	3.3	60	1.105	
NE 111	1.032	1.58	370	1.7	55	1.096	
Plastics ⁴⁾							
BC-400	1.032	1.581	423	2.4	65	1.103	
BC-404	1.032	1.58	408	1.8	1.8 68		
BC-408	1.032	1.58	425	2.1	2.1 64		
BC-412	1.032	1.58	434	3.3	60	1.104	
BC-414	1.032	1.58	392	1.8	68	1.110	
BC-416	1.032	1.58	434	4.0	50	1.110	
BC-418	1.032	1.58	391	1.4	67	1.100	
BC-420	1.032	1.58	391	1.5	64	1.100	
BC-422	1.032	1.58	370	1.6	55		
BC-422Q	1.032	1.58	370	0.7		1.102	
BC-428	1.032	1.58	480	12.5	50	1.103	
BC-430	1.032	1.58	580	16.8	45	1.108	
BC-434	1.049	1.58	425	2.2	60	0.995	

1) relative to anthracene

²⁾ ratio of hydrogen to carbon atoms

³⁾ Nuclear Enterprises Ltd. Sighthill, Edinburgh, U.K.

St ⁴⁾ Bicron Corporation, Newbury, Ohio, USA

Particle Physics Detectors, 2010

Inorganic Scintillators - Processes

- Inorganic Scintillating Crystals:
 - alkali halides (NaI(TI), CsI(TI), ...) and non-alkali materials (Bi₄Ge₃O₁₂=BGO, ZnS(Ag), ...)
 - exciton = free e^{-} -hole pair or exiton
 - causes emission of photon in activation centres
 - $N(t) = N_0 \exp\left(\frac{-t}{\tau_{d_1}}\right) \exp\left(\frac{-t}{\tau_{d_2}}\right)$ small activator impurity (TI, Na, Eu, Ag, Ga, ...): radiative emission from activation centres
 - traps: impurities providing non-radiative recombination

Inorganic Scintillators - Parameters

Particle Physics Detectors, 2010

Inorganic Scintillators (cont.)

			-		-				
	scintillator composition	density (g/cm ³)	index of refraction	wavelength of maximum emission (nm)	decay time constant (µs)	scintillation pulse height ¹⁾	notes	Photons/ MeV	
	Nal	3.67	1.78	303	0.06	190	2)		
	NaI(TI)	3.67	1.85	410	0.25	100	3)	4×10^4	D
	CsI	4.51	1.80	310	0.01	6	3)		
	CsI(Tl)	4.51	1.80	565	1.0	45	3)	1.1 × 10 ⁴	
	CaI(Na)	4.51	1.84	420	0.63	85	3)		
	KI(TI)	3.13	1.71	410	0.24/2.5	24	3)		
	⁶ LiI(Eu)	4.06	1.96	470-485	1.4	35	3)	1.4×10 ⁴	
	CaF ₂ (Eu)	3.19	1.44	435	0.9	50			
	BaF ₂	4.88	1.49	190/220 310	0.0006 0.63	5 15		$\begin{array}{c} 6.5\times10^3\\ 2\times10^3 \end{array}$	
	Bi ₄ Ge ₃ O ₁₂	7.13	2.15	480	0.30	10	(2.8×10^{3}	D
	CaWO ₄	6.12	1.92	430	0.5/20	50			
	ZnWO ₄	7.87	2.2	480	5.0	26			
	CdWO ₄	7.90	2.3	540	5.0	40			
	CsF	4.65	1.48	390	0.005	5	3)		
	CeF ₃	6.16	1.68	300 340	0.005 0.020	5			
	ZnS(Ag)	4.09	2.35	450	0.2	150	4)	1	
	GSO	6.71	1.9	440	0.060	20		1	
	ZnO(Ga)	5.61	2.02	385	0.0004	40	4)		
	YSO	4.45	1.8	420	0.035	50			
	ҮАР	5.50	1.9	370	0.030	40			
	¹⁾ relative to Na	I(Tl) ²⁾ at 80) K ³⁾ hygroso	copic ⁴⁾ polycrystall	ine				
\rightarrow	PbWO ₄	8.28	1.82	440, 530	0.010			100	P
		o [g/cm	³] n	λ [nm]	τ [ns]				
	LAr	1.4	1.29 ⁵⁾	120-170	0.005 / 0.860				
Particle Physics De	LKr	2.41	1.405)	120-170	0.002 / 0.085				IV/9
	LXe	3.06	1.60 ⁵⁾	120-170	0.003/0.022			4×10^4	

Table A6.2 Properties of some inorganic scintillators

Scintillator Readout I

- Scintillator: light production
- Light guide: transmission
 - total internal reflection
 - attenuation length l
 - geometrical loss
- PMT: light detection
- **Coupling:**
 - optical glue
 - optical grease
 - air gap

□ Shape adaptation:

- Fish tail:
 - adiabatic shape adaptation
 - needs space
- wavelength shifter:
 - 90° readout or as fibres
 - conversion efficiencies: ~10%
 - widely used for space advantage

Particle Physics Detectors, 2010

Scitillator Readout II

Scintillating Fibre Trackers I

□ Scintillating plastic fibres:

(R.C. Ruchti, Annu. Rev. Nucl. Sci. 1996, 46,281)

Scintillating Fibre Trackers II

- □ Scintillating fibres:
 - diameter: 1mm
 - close-packed stack

Hexagonal fibres:

- double cladding
- low cross-talk

Particle Physics Detectors, 2010

Photo Multiplier Tubes - Basic Principle

- Photon emission from photo cathode:
 - Quantum Efficiency: QE = $N_{p.e.}/N_{photons}$
- □ Single electron collection:
 - focusing optics
 - optimise efficiency
 - minimise transient time spread (<200ps)

equi-potentials and trajectories in a fast input system

- electric potential
- electron multiplication:
 dynode gain: g(E) = 3...50
- **Total gain:** $G = \Pi g_i$

e.g. 10 dynodes with g=4 \rightarrow G = 4¹⁰ \approx 10⁶ Particle Physics Detectors, 2010

1.25...50cm

PMT - Extension of Vision

Human eye:

- Spectral sensitivity:
- Time resolution:

- 400<S(λ)<750nm ~50ms
- Spatial resolution:
- Intensity range:

~100 lines/mm (2500dpi) $O(10^{16}\gamma/mm^2s)$ (daylight) $1\gamma \dots \sim 10^{8}\gamma/mm^2s$ single photon sensitivity after adaptation

Photomultiplier:

- 110<S(λ)<1600nm 50ps...10ns
- 1.25cm...50cm (new: 2mm)

(~1mA anode current for 1" tube)

Life time:

 $O(10^5 \text{C/mm}^2 = 70 \text{yrs})$

O(10C) for semi-transparent cathode

Photoemission

□ 2-step process:

- photo ionisation
- escape of electron into vacuum
- Multiple reflection / interference:
 - due to high refractive index
 - bialkali: $n(\lambda = 442 \text{ nm}) = 2.7$

QE difficult to measure:

- often only an effective detection efficiency determined, including:
 - internal reflection from a metallic surface
 - collection of the photoelectrons
 - electronic theshold...

Photon Detection Efficiency:

- PDE = $\varepsilon_{geom} \times QE \times \varepsilon_{photoel. detection}$
- for comparison of detector systems

Particle Physics Detectors, 2010

Spectral Response

2.15 eV

2.27 eV

0.5

1

0

2.50 eV

2.85 eV

3.06 eV

1.5

energy of photoelectrons (eV)

hv [eV]

- Photo cathode:
 - Alkali Csl, Sb-Cs
 - Bialkali Sb-K-Cs
 - Semiconductor Ga-As (negative E_A possible!)
- Band model:
 - E_A = electron affinity
 - W_{ph} = work function

Photo electric effect:

 $- hv > E_g + E_A + dE/dx$ - E = hv - W - dE/dx

$$E_e = Nv - VV - dE/dX$$

Particle Physics Detectors, 2010

Spectral response:

- Quantum efficiency:

$$QE(\lambda) = \frac{N_{p.e.}}{N_{\lambda}} = (1-R)\frac{P_{\nu}}{\alpha}P_{S}(\frac{1}{1+1/\alpha l})$$

- R = reflection coefficient
- $\alpha = \gamma$ absorption coefficient
- $l = e^{-}$ mean escape length
- P_{ν} = excitation probability
- P_s = surface transition probability

- Cathode sensitivity: $S(\lambda) = \frac{I_C}{P(\lambda)} = \frac{\lambda \text{ [nm]} \text{QE}(\lambda)}{1240} \text{ [A/W]}$

Stephan Eisenhardt

E_e [eV]

Photocathode Thickness

Blue light is stronger absorped than red light!

□ Semi-transparent cathodes:

- best compromise for the thickness of the PC:
- **7** photon absorption length $\lambda_A(E_{ph})$
- Solution electron escape length $\lambda_{E}(E_{e})$

- Q.E. of thick cathode:
 - red response **才** blue response **↓**
- Q.E. of thin cathode:
 blue response **7**
 - red response

Secondary Emission

- Alloy of alkali or earth-alkali and noble metal
- $\hfill\square$ Alkaline metal oxidises \rightarrow insulating coating
 - large gain
 - stability for large currents
 - low thermal noise
- Statistical process: Poisson distribution
 - spread (RMS)
 - largest at 1st and 2nd dynode
- □ Typically: 10 ... 14 dynode stages
- Linearity limits:
 - pulse: space charge
 - DC: photo current << bleeder current

Particle Physics Detectors, 2010

Gain $\delta = a(\Delta V)^k$ with k = 0.7...0.8

 $I = aT^2 \exp\left(\frac{-e\Phi}{kT}\right)$

 $P(\overline{n},m) = \frac{\overline{n}^m e^{-m}}{m!}$

dynodes

secondary e

electron multiplication

PMT Characteristics

Classic Dynodes

- uniformity:
- □ photoelectron collection efficiency:

- □ simple design
- \square good for large PC \varnothing

venetian blind 🙄 😕

box and grid $\bigcirc \bigcirc \bigcirc$

best photoelectron collection efficiency good uniformity

linear focusing 🙁 😳

circular cage 🙁 😳

compact fast time response

- excellent linearity
- good time resolution
- □ fast time response

sensitive to Earth B-field (30-60µT)!

no spatial resolution

Particle Physics Detectors, 2010

Sensitivity to Magnetic Fields

Modern Dynodes

Particle Physics Detectors, 2010

Micro Channel Plates

□ Lead glass plate:

- 10⁴-10⁷ tubes
- diameter: 10-100μm
- semi-conductor coating (high Ω)
- HV to metallic electrodes on faces
- electron multiplication in tubes
- gain: 10³-10⁴
- cascading possible

Advantages:

- very fast: transient time spread 50 ps
- less sensitive to B-field
- spatial resolution: 2-dim readout possible

Disadvantages:

- rate capability limit: ~ μA/cm²
- life time limit: ~ 0.5 C/cm²
- low active area fraction

Fig. 5.6. Microphotograph of microchannels [384]. electrode secondary electrons glass,tube (glass coating) 😫 outgoing primaryelectrons radiation photocathode window high voltage 500 700 300 700 300 Photon microchannel plate segmented anode anode 1V/29Photocathode Anode Chevron configuration

Multi-anode Photo Multiplier Tubes

pixel

Position sensitive PMT: П

- 8x8 metal channel dynode chains in one vacuum envelope $(26x26 \text{ mm}^2)$
- segmented anode: 2x2 mm²
- active area fraction: 48%
- UV glass window
- Bialkali photo cathode: П
 - QE = 22...25% at λ = 380 nm
- Gain: П
 - G = 3.10⁵ at 800 V
- Uniformity, Crosstalk:
 - much improved wrt. first attempts
- Applications:
 - medical imaging
 - HERA-B, COMPASS: Ring Imaging Cherenkov counters

next generation MaPMT

Particle Physics Detectors, 2010

Photo Diodes & Triodes

≤**3**00µm (sketches from J.P. Pansart, NIM A 387 (1997), 186) n⁺ \mathbf{n} anode cathode Ē to h div $\vec{E} = \frac{p}{c}$ x Photo Diode BGO photo cathode 40 mm vacuum tube anode (grid) Wavelength (nm) dynode IV/31

Photo Diodes:

- P(I)N type
- gain: G = 1 (hv = 3-4eV, band gap = 1-2eV)
- high QE: 60-80% at λ = 500-900 nm \rightarrow better E resolution than PMT
- insensitive to B-fields, compact, low power, ...
- better match to CsI, BGO, PbWO₄ emission spectra
- needs low noise: small area, cooling, large signal
- example:
 - BaBar/CLEO: Csl Calorimeter

Photo Triodes:

- single stage PMT
- gain: $G \approx 10$
- OK in axial B-fields up to 1T
- examples:
 - DELPHI, OPAL: lead glass endcap calorimeter
 - L3 lead/scintillating fibre calorimeter

Particle Physics Detectors, 2010

Avalanche Photo Diodes

Visible Light Photon Counter

Avalanche П

multiplication in highly doped gain region

Particle Physics Detectors, 2010

Stephan Eisenhardt

donor atom \rightarrow free e⁻

Advantages:

- low bias voltage: ~ 7V
- sensitive to IR (@ T_{op} =6-9K)
- Quantum efficiency: 70% at 520 nm
- gain: G ~ 50000

Disadvantages:

dark count rate: 20kHz/mm²

Example:

Fermilab E835 (D0): fibre tracker

Particle Physics Detectors, 2010

(not now) – s

Disadvantages:

- limited area
- high dark count rate (0.1-1MHz/mm²)
- optical cross-talk
- temperature drift of gain/PDE
- long signal decay time/pixel (recovery...)
- limitation to dynamic range
- still proto-types

Stephan Eisenhardt

4x4mm

Geiger-mode APDs (aka: SiPM, PixelPM)

Main features:

- Sensitive size: chips of 1...16mm² chip
- up to 6400 pixel of size $50x50\mu m^2$
- Binary read-out for each pixel
- Gain: 2x10⁵
- U_{bias} ~ 50V
- Recovery time: ~ 100ns/pixel
- Pixel-to-pixel signal uniformity quite good

□ Advantages:

- PED: now 30-50%, 60-80% possible
- low operation voltage: typical 30-100V
- very fast signal rise-time
- very compact, flexible geometry
- very robust (survive daylight when biased!)
- insensitive to magnetic fields
- eventually low cost (not now...)

Scintillating Tiles and GAPDs (SiPMs)

Silicon "Photo Multipliers":

- Geiger-mode APD, 1mm²
- multi-pixel
- gain: $G = 10^{6}$
- bias: V ~ 50V

- Example: Calice pre-prototype
 - 3x3cm2 scintillator tiles
 - wavelength shifting fibre
 - directly couples to SiPM with 1156 pixels

Analog readout:

counts

- charge of pixels summed
- allows autocalibration by counting pixel peaks
- saturation (2+ hits in one pixel) \rightarrow non-linearity

Hybrid Photon Diodes

Pixel HPD

Photon detector:

- 7mm thick quartz window
- S20 photocathode
 - typical ∫ QE dE > 0.7eV
- Cross-focussing optics (tetrode structure):
 - de-magnification by ~5
 - 50 μm point-spread
 - active diameter 75mm
- 20 kV operating voltage (~5000 e⁻ [eq. Si])

Anode:

- 256×32 pixel Si-sensor array
 - small pixels \rightarrow low noise
- bump-bonded to binary readout chip
- assembly encapsulated in vacuum tube
- LHCb readout mode: 8-fold binary OR
 - \rightarrow effective 32×32 pixel array
- pixel size 500μm×500μm sufficient

Particle Physics Detectors, 2010

Single Photon Detection Performance

Particle Physics Detectors, 2010

Stephan Eisenhardt

IV/39