

Calorimetry & Jet Finding

□ Calorimetry:

- Interactions of charged particles and photons
- Electromagnetic cascades
- Nuclear interactions
- Hadronic cascades
- Calorimeters
 - Homogeneous calorimeters
 - Sampling calorimeters
- Jet Finding
 - Kinematics
 - Event shapes
 - Jet finding algorithms

SUPA Graduate Lecture, Oct 2010

Basic Principle

□ Calorimetry:

- measure energy by absorbing radiation
- analogous to temperature measurement for heat absorption

Detector:

- use massive detector to stop the particles \rightarrow measure response
- response proportional to energy
- works for charged (e^{\pm} and hadrons) and neutral particles (neutrons, photons)
- segmentation \rightarrow spatial resolution

How does calorimetry work?

- formation of electromagnetic and/or hadronic showers
- energy converted into ionisation or excitation of matter \rightarrow visible energy fraction
- detection by many different mechanisms:
 - scintillation
 - Cherenkov light
 - ionisation
 - dE/dx
- 2 modes: homogeneous or sampling

Recap: Bremsstrahlung

Photon emission in nucleon field:

$$-\frac{dE}{dx} = 4\alpha N_A \frac{Z^2}{A} z^2 \left(\frac{1}{4\pi\varepsilon_0} \frac{e^2}{mc^2}\right)^2 E_0 \ln \frac{183}{Z^{\frac{1}{3}}} \propto \frac{E_0}{m^2}$$

□ Important only for e⁺and e⁻: (

Radiation length X_0 :

$$-\frac{dE}{E_0} = \frac{dx}{X_0} \quad \langle E \rangle = E_0 e^{-X/X_0}$$

Critical energy E_C(e):

$$\left. \frac{dE}{dx} \left(E_c \right) \right|_{Brems} = \frac{dE}{dx} \left(E_c \right) \right|_{ion}$$

due to density effect in the relativistic rise:

$$E_c^{\text{solid+liq}} = \frac{610 \text{ MeV}}{Z+1.24}$$
 $E_c^{\text{gas}} = \frac{710 \text{ MeV}}{Z+1.24}$

□ For Fe (Z=26):

Particle Physics Detectors, 2010

Stephan Eisenhardt

V/3

Recap: Pair Production

- □ For momentum conservation:
 - Coulomb field of nucleus (electron) needed to absorb recoil
 - minimum energy: $E_{\gamma} \ge 2m_e c^2$
- Related to Bremsstrahlung by substitution
- **Cross-section**:
 - low energy limit: $2 \ll \epsilon \ll 137/Z^{1/3}$

$$\sigma_{pair} \approx 4\alpha r_e^2 Z^2 \left(\frac{7}{9} \ln 2\varepsilon\right)$$

- high energy limit: $\epsilon >> 137/Z^{1/3}$

$$\sigma_{pair} \approx 4\alpha r_e^2 Z^2 \left(\frac{7}{9} \ln \frac{183}{Z^{\frac{1}{3}}}\right) \approx \frac{7}{9} \frac{A}{N_A} \frac{1}{X_0} \approx \frac{A}{N_A} \frac{1}{\lambda_{pair}}$$

Independent of energy

D Mean free path: λ_{pair}

Radiation length X₀

$$\lambda_{pair} = \frac{9}{7} X_0 \qquad \left\lfloor \frac{g}{cm^2} \right\rfloor$$

Particle Physics Detectors, 2010

Electromagnetic Cascades - Evolution

High energy electron or photon starts shower: Bremsstrahlung (y emission) and pair production alternate Eo statistical process in average: equal split of energy between particles until energy drops below critical energy E_c E0/2 E0/6 E0/8 E0/16 where loss due to collision halt the cascade +[X_] 5 6 Simple model: after t radiation lengths: **Electron shower** number of particles (e⁻, e⁺, γ): $N \cong 2^t$ in cloud chamber average energy: $E(t) \cong \frac{E_0}{2^t}$ with Pb absorber 0.125 100 Maximum penetration depth: 30 GeV electron $E(t_{\max}) \cong \frac{E_0}{2^{t_{\max}}} = E_C$ assume abrupt stop at E_c : 0.100 incident on iron 80 Number crossing plane .0 (1/E⁰) qE/qt (1/E⁰) $t_{\rm max} = \frac{1}{\ln 2} \ln \frac{E_0}{E_0}$ Energy Photons ×1/6.8 0.025 Electrons maximum number of particles: $N_{\text{max}} \cong \frac{E_0}{E_c}$ 5. 10 15 20 Depth in radiation lengths Particle Physics Detectors, 2010 Stephan Eisenhardt V/5

Elmag. Cascades – Shower Profile

- Longitudinal shower profile / energy deposit:
 - slower than exponential rise
 - shower maximum
 - exponential decay

Shower containment:

reasonable to measure: 95% containment

 $t_{95\%} \approx t_{\rm max} + 0.08Z + 9.6$

 $t_{\rm max} = \ln \frac{E_0}{E_0} \frac{1}{\ln 2}$

- e.g. 100 GeV shower in BGO: $E_c = 10.5 \text{ MeV}$, $t_{max} = 13 X_0$, $t_{95\%} = 23 X_0$
- size grows logarithmically with E₀
- size scales with X_0

Transverse shower profile: $R_{M} = \frac{21 \,\mathrm{MeV}}{E_{0}} X_{0} \quad \left| \frac{g}{cm^{2}} \right|$

- Moliere radius:
- 95% E_0 within 2 R_M
- 99% E_0 within 4 R_M

Particle Physics Detectors, 2010

Stephan Eisenhardt

(C. Fabjan, T. Ludlam, CERN-EP/82-37)

Elmag. Cascades – Energy Resolution

- □ Fluctuations:
 - due stochastic processes
 - e.g. # of photons produced in scintillator: n
 - Poisson \rightarrow Gaussian for large <n>
 - \rightarrow resolution improves with energy
 - sampling: less signal \rightarrow larger fluctuation
 - sampling: larger $Z \rightarrow$ larger angle \rightarrow smaller sampling fraction \rightarrow worse resolution...
 - intrinsic limit: additional effects contribute
- General energy resolution formula:
 - stochastic term
 - constant term
 - non-linearities, inhomogenities, calibration
 - noise term
 - electronics resolution corresponds to fixed energy
 - additional signal degradation: e.g. shower leakage.
 - lateral leakage:
 - longitudinal leakage: fraction f

Particle Physics Detectors, 2010

Nuclear Interactions

Z,A

hadron

□ Charged particle interactions:

- for π , K, p; but not μ
- with $E > \sim 5 GeV$
- dominated by inelastic nuclear processes
- excitation and break-up of nucleus
- produce secondary particles
- **D** Particle multiplicity of inelastic scattering: $\infty \ln(E)$
- □ Cross sections:
 - depends on A of calorimeter material
 - but little on particle energies for E > 1 GeV
- **D** Nuclear (hadronic) absorption length: λ , λ_a
 - scale of spatial development of had. shower
 - e.g. iron: λ_a =16.8cm \rightarrow typical shower size of 100GeV π : 2m long, 60cm wide
- □ Nuclear (hadronic) interaction (collision) length: λ_{had} , λ_T
 - mean free path (like for photons)

Particle Physics Detectors, 2010

$$\sigma_{inel} \approx \sigma_0 A^{0.7} \quad \sigma_0 \approx 35 \, mb$$

$$\lambda_a = \frac{A}{N_A \rho \sigma_{inel}} \propto A^{\frac{1}{4}}$$
 because $\sigma_{inel} \approx \sigma_0 A^{0.7}$

$$\lambda_{had} = \frac{A}{N_A \rho \sigma_{total}} \propto A^{\frac{1}{3}} \qquad \lambda_{had} < \lambda_a$$

Stephan Eisenhardt V/8

Neutrons

Neutron detection:

- only strong interaction: needs ~10⁻¹⁵m distance to nuclei
- \rightarrow much rarer process
- − → neutrons are very penetrating
- large scattering angles

Processes: $\sigma_{tot} = \Sigma \sigma_i$

- high energy hadron shower:
- elastic scattering off nuclei:
- inelastic scattering:
- radiative neutron capture:
- nuclear reactions:
- fission:

$$\begin{array}{l} np \rightarrow X \ , \ nn \rightarrow X \\ A(n,n)A \\ A(n,n')A^{*} + \gamma \ , \ A(n,2n')B + \gamma \\ n+(Z,A) \rightarrow \gamma + (Z,A+1) \\ (n,p), \ (n, \ d), \ (n, \ \alpha), \ \dots \\ (n, \ f) \end{array}$$

Particle Physics Detectors, 2010

Hadronic Cascades I

Hadronic component:

- charged hadrons: π , K, p
- neutral particles: soft γ , neutrons (need recoil p, i.e. H)
- low-E protons: 10-100 x ionisation of MIP

□ Invisible component:

- v and μ from π decay
- fission and spallation products:
 - low-E γ , π and neutrons \rightarrow secondary spallation
 - nuclear fragments \rightarrow stopped in absorber
 - low-E electromagnetic component:
- Electromagnetic component:

 $\pi^{0} \rightarrow \gamma \gamma$ initiate el.mag. cascade ratio $\pi^{0} / (\pi^{+} + \pi^{-})$ fluctuates

□ Energy resolution:

- limited due to large fluctuations
- lower sampling fraction
- poorer shower containment

fraction $f_{em} = 0.38 ... 0.73$

for 10 ... 1000 GeV

(Grupen)

Ψμ

Hadronic Cascades II

Interaction Lengths

Table 5. Radiation length X_0 , critical energy E_c and hadronic absorption length λ_{had} for some materials

 $\square \quad \text{Radiation length } X_0:$ $-\frac{dE}{E_0} = \frac{dx}{X_0} \qquad \langle E \rangle = E_0 e^{-X/X_0}$

Interaction length λ_{T} :

$$N(x) = N_0 e^{-\frac{x}{\lambda_{had}}}$$

Particle Physics Detectors, 2010

Calorimeters

Homogeneous calorimeters:

- detector = absorber
- good energy resolution
- limited spatial resolution in longitudinal direction
- only for electromagnetic calorimeters

Sampling calorimeters:

- intersperse detectors and absorbers
- only fraction of energy is sampled
- limited energy resolution
- good spatial resolution
- for hadronic and electromagnetic calorimeters

Ideal calorimeter:

- coverage of full solid angle of experiment: no holes, highly segmented
- measurement of energy and position:
- fast response for trigger:
- within limitations of :

Particle Physics Detectors, 2010

good energy and spatial resolution ZEUS FCAL MODULE dependent on cross section and luminosity technology, space, time, budget Stephan Eisenhardt

particles

ZEUS

Homogeneous Calorimeters I

- OPAL barrel & end-cap: lead/glass + presampler
 - − \approx 10500 blocks: 10 x 10 x 37 cm³, 24.6 X₀
 - spatial resolution (intrinsic) \approx 11 mm at 6 GeV
 - readout:
 - barrel: photo multiplier
 - end-cap: photo triode
 - resolution:

$$\frac{\sigma(E)}{E} = \frac{6\%}{\sqrt{E}} \oplus 0.2\%$$

(OPAL collab. NIM A 305 (1991) 275)

Homogeneous Calorimeters II

Homogeneous Calorimeters III

Homogeneous Calorimeters IV

- □ BaBar CsI el.mag. calorimeter:
 - 6580 CsI(TI) crystals, pointing geometry
 - barrel: 48 azimuthal rings, forward: 8 rings
 - PIN photodiode readout
 - energy and angular resolution:

$$\frac{\sigma(E)}{E} = \frac{2.32\%}{\sqrt[4]{E}} \oplus 1.85\% \quad \sigma_{\theta,\phi}^{\text{design}} = \frac{3mrad}{\sqrt{E}} \oplus 2mrad$$

Homogeneous Calorimeters V

□ CMS lead-tungstate el.mag. calorimeter:

- 80000 PbWO₄ crystals (98%_{mass} metal)
- 26 $X_0 = 23$ cm, 22x22 mm² front-face = R_M
- pointing geometry, inside 4T solenoid
- radiation dose: 1-2kGy/year \rightarrow colours crystal
- avalanche photodiode readout
- stochastic energy resolution:

- Endcap: preshower detector
 - 2 lead layers with Si-strip detectors at 1.9mm pitch
 - impact resolution: $\sim 300 \mu m$

Particle Physics Detectors, 2010

Stephan Eisenhardt

V/19

Presampling Calorimeters

□ Sampling calorimeters:

- channels with PMT readout and signal processing via ADCs are expensive
- several sampling volumes are combined into one readout channel
- cell volumes are large
- calorimeters are placed outside the tracking detectors
- Dead material:
 - e.g. beam pipe, detector enclosures, solenoids, support structures
 - showering in these materials gives rise to secondary particles and energy loss

Presampling calorimeter:

- placed before el.mag. calorimeter
- one layer of scintillator with same or better cell resolution as calorimeter
- counts initial particle multiplicity entering the calorimeter
- gives estimate of showering and energy loss before calorimeter
 - \rightarrow correction possible \rightarrow reducing error from fluctuation \rightarrow increase energy resolution
- refinement1: a layer of absorber plus another layer of scintillator read out separately \rightarrow absorber adds to dead material \rightarrow second scintillator layer discriminates e and γ showers
- refinement2: Si-strip detector instead of scintillator $\rightarrow \gamma \pi^0$ separation from position resolution

SCI

Sampling Calorimeters I

LHCb ECAL: "Shashlik" electromagnetic calorimeter:

- 66 layers of 2 mm Pb absorber plates
- interspersed with 4 mm scintillator tiles
- light collection with wavelength shifting fibres, turned round at front-end
- read-out by photo multiplier tubes
- thickness: 25 X_0 or 1.1 λ_{had}

Sampling Calorimeters II

LHCb HCAL:

- 16 mm iron absorber plates, parallel to beam
- interspersed with 4 mm scintillator tiles, staggered
- light collection with wavelength shifting fibres
- read-out by photo multiplier tubes
- thickness: 5.6 λ_{had}

Particle Physics Detectors, 2010

Sampling Calorimeters III

- □ CMS hadronic calorimeter:
 - absorber 50mm copper (high density) + 4mm scintillator
 - 1mm wavelength shifting and clear fibres
 - cell size: $\Delta \eta \times \Delta \phi = 0.87 \times 0.87$
 - pointing geometry, inside 4T solenoid
 - not thick enough to contain high-E particles
 - \rightarrow further scintillator layers outside solenoid...
 - full length (incl. solenoid): ~11 λ_{had}
 - resolution:

Readout:

- commercial 19- and 73-channel HPD at 10-15kV
- ok in high axial fields, linear up to 3TeV hadron showers
- huge dynamic range: multi-range FADCs FADC vs. Energy

Stephan Eisenhardt

V/23

Sampling Calorimeters IV

ZEUS uranium calorimeter:

- 3000 tons of depleted U²³⁸
- 11592 cells, 5x20cm²-20x20cm²
- double-sided readout via wavelength shifters
- thickness: EMC 22-30 X_0 , HAC 4.0-7.1 λ_{had}
- time resolution: $\sigma_t \sim 1 \text{ ns} (>4.5 \text{GeV})$

Compensation:

- special layout: el.mag. & had. showers have same energy yield: $\frac{e}{h} = 1.00 \pm 0.02$
- neutrons recoil off protons 'in scintillator
 → regenerate visible energy
- U²³⁸ gives additional n from spallation
 → smaller volume than for other absorber
- visible fraction *e* lower in high Z material
- adjust rel. thickness: absorber/scintillator
- resolution:

$$\frac{\sigma^{elmag}(E)}{E} = \frac{18\%}{\sqrt{E}} \oplus 1\% \qquad \frac{\sigma^{had}(E)}{E} = \frac{35\%}{\sqrt{E}} \oplus 2\%$$
Particle Physics Detectors, 2010

Event Kinematics

□ Example: deep inelastic ep-scattering

- combines features of e⁺e⁻- and pp-scattering
- initial state: lepton + quasi-free partons
- el.mag probe: QED $\alpha_{el} \sim 1/137$
- strong hard process: QCD $\alpha_s \sim 1...0.1$
- soft (non-perturbative) fragmentation
- hadronisation \rightarrow hadronic final state
- HFS features:
 - current jets (high p_T)
 - proton remnant (spectator jet)
- initial state radiation (el.mag.)
- final state radiation (el.mag. or strong)
- □ Kinematic variables:
 - centre of mass energy: s
 - Bjorken scaling variables:
 - $Q^2 = -q^2$: 4-momentum transfer
 - $x = Q^2 / 2pq$: momentum fraction of struck parton
 - pseudo-rapidity: η = -ln tan $\theta/2$

Event Shapes

- □ Global geometrical description of final state:
 - predecessors of jet finding algorithms
 - to distinguish classes of decay patterns

- theoretical predictions: usually on parton level (or NLO or NLL ...)
- without a good hadronisation model: no reliable comparison to hadronic final state
- but geometrical patterns of the hard processes can be predicted
- assuming that they are still visible after hadronisation \rightarrow event shapes
- still of interest:
 - determine power (1/Q²) corrections
 - α_s form their Q² dependence in e⁺e⁻ and ep-scattering

Particle Physics Detectors, 2010

Particle Jets

□ What are jets?

- quarks and gluons from hard scattering processes
- not observable directly
- but will appear as collimated flow of hadrons
- □ Assumptions:
 - jets carry the approximate 4-vector of the hard scattered partons
 - strong correlation for large Q²
 - fails for low Q² at ~1GeV
 - jet constituents are massless

□ Structure of jet analysis:

- prediction on parton level
- evolution via splitting functions: $q \rightarrow qg$, $g \rightarrow gg$, $g \rightarrow q\bar{q}$
 - exact ME calculation (NLO, NNLO)
 - parton shower model (LLA, NLL)
 - mostly soft and collinear
- further broadening due to hadronisation
 - but p_L ,jet >> p_T ,jet

Particle Physics Detectors, 2010

Jet Finding Algorithms

□ Two classes:

- geometrical algorithms: CONE(s)
 - simple concept
 - many slightly different implementations
 - practical problems with overlapping jets
- cluster algorithms: JADE, K_T
 - more complicated definitions
 - but deterministic, i.e. no ambiguities
 - theoretical advantages

Jet Finding Algorithms I

Jet Finding Algorithms II

- □ JADE algorithm: cluster particles with minimal 'distance' in invariant mass
 - for massless 4-vectors
 - on detector level: introduce 'pseudo particle' for remnant
 - calculate all distances: $m_{ij}^2 = 2E_i E_j (1 \cos \Theta_{ij})$
 - find minimum and recombine {i,j} if: $\frac{m_{ij}^2}{M^2} < y_{cut}$

- energy scale: reference mass M^2 (usually = W^2 : total hadronic mass)
- resolution parameter: y_{cut}
- □ Advantages:
 - covariant algorithm (defined in any reference system)
 - allows factorisation of phase space (good for fixed order ME calculations)
 - all particles will end up in a jet
- Problems:
 - remnant grabs much from the hadronic final state at lower η
 - \rightarrow large hadronisation corrections
 - distance definition is 'non-local' in angle
 - \rightarrow production of 'phantom jets'
 - how to recombine cells: Lorentz invariant, conserve E and/or p
 , with or w/o scaling ...
 Particle Physics Detectors, 2010
 Stephan Eisenhardt
 V/31

Jet Finding Algorithms III

- k_T (Durham) algorithm: in BREIT frame: cluster particles with minimal distance in "transverse momentum" k_T
 BREIT frame: cluster particles with minimal distance in BREIT frame: cluster particles with minimal
 - Breit frame = brick wall frame for the probed particle
 - clear separation between current and remnant region
 - calculate all distances: $k_{T,ip}^2 = 2E_i^2(1 \cos \Theta_{ip})$

$$k_{T,ij}^2 = 2\min\{E_i^2, E_i^2\}(1 - \cos \Theta_{ij})$$

find minimum and recombine {i,p} or {i,j} if:

- scale = Q², p_T², k_T², ...
$$\frac{k_{T,ij}^2}{scale} < y_{cut}$$
 or $\frac{k_{T,ij}^2}{scale} < y_{cut}$

- □ Advantages:
 - can be used on parton/hadron/detector level in exactly the same way
 - less sensitive to perturbation from soft particles
 - supports analysis of internal jet structures by emission of secondary particles
 - jet cross sections satisfy factorisation theorem \rightarrow absolute predictions using PDFs possible
 - $-k_T$ distance measure is suggested by coherence properties of soft QCD emission
- □ Properties:
 - remnant is spread over full detector
 - "like" cone with event-by-event adjusted radius R

Particle Physics Detectors, 2010

ILC CALORIMETRY

- CALICE: Calorimetry for a Linear Collider Experiment: (option)
 - ECAL & HCAL inside solenoid
 - tungsten absorber:
 - small X₀ ~ 3.5mm
 → small thickness
 - small R_M ~ 9mm
 - \rightarrow defines size of el.mag. cell
 - comparably large $\lambda_a \sim 9.59$ cm
 - \rightarrow hadron shower spreads wrt. elmag.

□ Si-diode readout:

- small diode pads: ~1x1cm²
- 3000m² of silicon, 38 million channels (O(10³)x today...)
- □ allows for the "tracking calorimeter":
 - el.mag. shower is contained in 1+9 cells
 - had. shower: spreads, mostly one particle per cell...

Particle Flow Algorithms

negligible

~25%

~10%

~40%/√E

~10%/√E

- Optimise jet energy resolution:
 - reconstruct each particle individually
 - use the best possible detector component
- Charged particles:
 - use tracking detectors
 - fraction of typical jet energy: ~65%
 - resolution:
- Photons:
 - use el.mag. calorimeter
 - fraction of typical jet energy:
 - resolution:

Neutral hadrons: П

- use hadron calorimeter
- fraction of typical jet energy:
- resolution:

Average jet energy resolution:

- naively:
- real world detector probably: Particle Physics Detectors, 2010
- "tracking calorimetry" ~15%/√F gives additional detailed information aim: reconstruction of neutrals ~30%/√E Stephan Eisenhardt

CALICE