

Particle Identification, Trigger & Modern Detectors

Particle Identification

- Neutral particles
- Methods for charged particles
- □ Trigger
 - Basics
 - Modern Example
- not presented: Modern Detectors
 - "slide show"

SUPA Graduate Lecture, Oct 2010

π0

□ lightest neutral hadron:

- life time: τ =0.084fs (π^{\pm} : τ =26ns)
- decay: π⁰→γγ; BR = 98.798%
- γ energy and angle:

$$E_{\gamma} = \frac{1}{2} E_{\pi} (1 + \beta \cos \theta_{CMS}) \qquad \beta = \sqrt{1 - \frac{m_{\pi}^2}{E_{\pi}^2}} \qquad \gamma_2, E_2$$

- $J_{\pi} = 0 \rightarrow \text{isotropic } \theta \text{ distribution in CMS}$
- deterministic kinematics
- reconstruction from el.mag. showers induced by the 2γ :
 - needs el.mag. calorimeter: $E_{\gamma 1}$, $E_{\gamma 2}$
 - disparity: D > 3 for 50%, D > 7 for 25%
 - good angular resolution: distance d \rightarrow angle θ
 - for π^0 hypothesis: use mass restriction $m_{\pi 0}$ =135MeV

□ heavier neutral hadrons:

- long living: neutron
- short living: η, ρ⁰, ω, φ, K_S⁰(90fs), [K_L⁰(51ns)], D⁰(0.41ps), B⁰(1.5ps), Δ, Λ, Σ, Ξ, ...
 - reconstructed kinematically from secondary particles : π^0 , γ & charged particles

Particle Physics Detectors, 2010

Stephan Eisenhardt

$$D = \frac{E_1}{E_2} \approx \frac{1 + \cos\theta}{1 - \cos\theta} \quad \text{for} \quad \beta \to 1$$

 π^0 , E_{π}

 γ_1, E_1

Neutron Counters

- \Box no direct detection possible \rightarrow 4 main methods:
 - thermal n: neutron activation reactions, e.g. ${}^{63}Cu(n,\gamma){}^{64}Cu \rightarrow$ measure delayed γ
 - $E_n < 20$ MeV: prompt nuclear reactions with charged secondaries
 - $E_n < 1 GeV$: elastic scattering of n or p \rightarrow measure recoil partner
 - $E_n > 5$ GeV: cascade of inelastic scatterings \rightarrow calorimeter
- neutron monitor:
 - up to 20MeV
 - uses paraffin (H2 rich) as moderator to thermalise neutrons
 - \rightarrow large cross section for prompt nuclear reactions (1-1000 barn)

10keV-10MeV

Time of Flight Measurement

particle identification through flight time:

$$\Delta t = \frac{L}{\beta_1 c} - \frac{L}{\beta_2 c} = \frac{L}{c} \left[\sqrt{1 + \frac{m_1^2 c^2}{P^2}} - \sqrt{1 + \frac{m_2^2 c^2}{P^2}} \right] \approx \frac{Lc(m_1^2 - m_2^2)}{2P^2} \text{ for } t = \frac{L}{c} \left[\sqrt{1 + \frac{m_1^2 c^2}{P^2}} - \sqrt{1 + \frac{m_2^2 c^2}{P^2}} \right] \approx \frac{Lc(m_1^2 - m_2^2)}{2P^2} \text{ for } t = \frac{L}{c} \left[\sqrt{1 + \frac{m_1^2 c^2}{P^2}} - \sqrt{1 + \frac{m_2^2 c^2}{P^2}} \right] \approx \frac{Lc(m_1^2 - m_2^2)}{2P^2} \text{ for } t = \frac{L}{c} \left[\sqrt{1 + \frac{m_1^2 c^2}{P^2}} - \sqrt{1 + \frac{m_2^2 c^2}{P^2}} \right] \approx \frac{Lc(m_1^2 - m_2^2)}{2P^2} \text{ for } t = \frac{L}{c} \left[\sqrt{1 + \frac{m_1^2 c^2}{P^2}} - \sqrt{1 + \frac{m_2^2 c^2}{P^2}} \right] = \frac{L}{c} \left[\sqrt{1 + \frac{m_1^2 c^2}{P^2}} - \sqrt{1 + \frac{m_2^2 c^2}{P^2}} \right] = \frac{L}{c} \left[\sqrt{1 + \frac{m_1^2 c^2}{P^2}} + \frac{L}{c} \left[\sqrt{1 + \frac{m_1^2 c^2}{P^2}} - \sqrt{1 + \frac{m_2^2 c^2}{P^2}} \right] = \frac{L}{c} \left[\sqrt{1 + \frac{m_1^2 c^2}{P^2}} + \frac{L}{c$$

□ time resolution:

- σ_t =300ps for organic scintillation counter
- σ_t =50ps for parallel-plate counter
- $\Box \quad 4\sigma_t \text{ separation : } \sigma_t = 300 \text{ ps } \sigma_t = 50 \text{ ps}$

π-K @ 1GeV	3.4m	0.6m
π-K @ 2GeV	13m	2.2m
e-π @ 200MeV	1.0m	0.16m
e-π @ 400MeV	6.0m	1.0m

method limited to low momenta (<2GeV/c)</p>

COSY TOF barrel & end cap

dE/dx

Low energy range:

е

- heavier particles polarise medium stronger \rightarrow larger energy loss via ionisation
- Bethe-Bloch: dE/dx rises strongly for p<m [GeV]
- used in emulsions, cloud & bubble chambers and tracking chambers
- several samples taken per track: increased efficiency
- "multiple ionisation measurement" in region of relativistic rise

Transition Radiation

□ X-ray regime:

- $\epsilon = n^2$; $\epsilon = \epsilon_1 + i\epsilon_2$; $\epsilon_1 < 1$; $\epsilon_2 <<1$: v>v_C, i.e. below Cherenkov radiation threshold
- but still photons emitted at n-boundaries, i.e. change in dielectric constant
- charge in vacuum and mirror charge in medium form moving dipole \rightarrow el.mag. "TR"
- □ periodic radiator + detector, e.g. proportional chamber:
 - intensity ~ γ , concentrated in half opening angle ϕ ~ 1/ γ γ =E/mc²
 - periodic arragement: foils or air gaps \rightarrow interference \rightarrow threshold in γ
 - X-ray absorption ~ $Z^{3.5} \rightarrow$ low Z radiator needed \rightarrow best candidate: Li

Recap: Threshold Cherenkov Counter

Cherenkov Counter - Details

 $\frac{dN}{d\lambda} \approx \frac{2\pi\alpha}{\lambda^2} L\sin^2\theta_C$

- angular distribution of radiation:
 - produced photons: N
 - maxima due to diffraction
 - for a long radiator: $L >> \lambda$
 - number of produced photons: flat in energy!!

$$N = 2\pi\alpha L \int_{\lambda_2}^{\lambda_1} \frac{\sin^2 \theta_C}{\lambda^2} d\lambda = \frac{2\pi\alpha L}{\hbar c} \int_{E_1}^{E_2} \sin^2 \theta_C dE \; ; \; c = \lambda v \; ; \; E = \hbar$$

- figure of merit : $N_{eff} = \epsilon N$, with detector efficiency ϵ
- □ Counter types:
 - threshold:
 - limited by choice of material & momentum
 - differential:
 - better selection \rightarrow better separation
 - DISC:
 - differential, correcting for chromatic dispersion in radiatör^{ΔεμΑΤΙVE VELOCITY β=ν/c}
 - achieved: $\Delta\beta/\beta\sim 10^{-7} \rightarrow \pi$ -K separation up to 500GeV/c
- □ Problem: only for particles parallel to optical axis of detector, i.e.

Particle Physics Detectors, 2010along beam lineStephan Eisenhardt

 $\frac{d^2 N}{d\lambda d\cos\theta} = \frac{2\pi\alpha}{\lambda} \left(\frac{L}{\lambda}\right)^2 \left(\frac{\sin x}{x}\right)^2 \sin^2\theta \quad x(\theta) = \frac{\pi\lambda}{L} \left[\frac{1}{n\beta} - \cos\theta\right]$

 $\frac{N}{1cm} = 490\sin^2\theta_C \Big|_{400nm}^{700nm}$

Cherenkov Media

chose material n to match separation of $m_1 < m_2$: heavier particle m₂ does not yet radiate medium βs n $\gamma_{\rm S}$ (threshold) (threshold) - or is just below threshold: $\beta_2 < 1/n$ Diamond 2.42 1.10 0.41 selection of radiator materials: ZnS(Ag) 2.37 1.10 0.42 lead fluoride 1.80 1.20 0.56 gases at normal conditions Glass 1.46-1.75 1.22-1.37 0.57-0.68 - Aerogel fills gap between gases and solids/fluids Scintillator (toluene) 1.58 0.63 1.29 example light yield: Plexiglas (acrylic) 1.48 1.36 0.68 Water 1.33 1.52 0.75 - e.g. π -K separation 2.7 - 4.51.025-1.075 0.93-0.976 Aerogel - radiator: L=1m of C_4F_{10} Pentane 1.0017 17.2 0.9983 - thresholds in $C_{4}F_{10}$: $E_{\pi} = 2.6 \text{GeV}$; $E_{\kappa} = 9.3 \text{GeV}$ C_4F_{10} 1.0014 18.9 0.9986 CF₄ 1.00050 31.6 0.9995 - <QE> of photodetector: $\varepsilon_{QE} = 0.2$ CO_2 1.00043 34.1 0.9996 - detector efficiency: ε_{D} He 1.000033 123 0.99997 light vield:

• $\pi @ 9 \text{GeV}: \rightarrow \beta_{\pi} = 0.999879 \rightarrow \theta_{\pi} = 50 \text{mrad}$

$$N = \varepsilon_{QE} \varepsilon_D L \cdot 870 \sin^2 \theta_C \Big|_{300nm}^{700nm} = \varepsilon_{QE} \varepsilon_D \cdot 220 = \varepsilon_D \cdot 44$$

- $\pi @ 10 \text{GeV:} \rightarrow \beta_{\pi} = 0.999902 \rightarrow \theta_{\pi} = 51 \text{mrad}$ $N = \varepsilon_{OE} \varepsilon_D \cdot 226 = \varepsilon_D \cdot 45.2$
- K @ 10GeV: $\rightarrow \beta_{\rm K}$ =0.998780 $\rightarrow \theta_{\rm K}$ =19mrad $N = \varepsilon_{OE} \varepsilon_D \cdot 31 = \varepsilon_D \cdot 6.2$

Particle Physics Detectors, 2010

Stephan Eisenhardt

 $\beta^2 = 1 - \frac{m^2 c^4}{E^2}$ $\gamma^2 = \frac{1}{1 - \beta^2}$

Aerogel I

□ structure: $n(SiO_2)+2n(H_2O)$

- "foamed silicon" \rightarrow light: 22 litres = 3 kg
- baked out in tiles of up to ~15x15x6cm³
- production: sol-gel process
 - $nSi(OR)_4 + 4nH_2O \rightarrow nSi(OH)_4 + 4nH_2O$ hydrolysis $nSi(OH)_4 \rightarrow (SiO_2)_n + 2nH_2O$ condensation
 - chemical treatment to make hydrophobic
 - supercritical drying: CO₂ extraction method (31°C, 7.5 MPa)

□ transmission T:

- exponential λ^4 dependence:
- limited by
 Rayleigh scattering

- red emission dominant Particle Physics Detectors, 2010

VI/10

Aerogel II

□ clarity C: (with n=1.030±0.001 @ 400nm)

- Matsushita (hydrophobic): C ~ 0.009 μm⁴ cm⁻¹
- Novosibirsk (hydroscopic): C ~ 0.005 μm⁴ cm⁻¹
 - larger tiles
 - higher yield of unscattered photons
 - but more difficult to handle

new developments:

- higher index aerogels
- stacking of 2...3 different indices for better proximity focussing

 $n_1 = 1.045$

 $n_2 = 1.050$

160mm

- □ 1st generation: 70's-80's
 - n = 1.025-1.055
- □ 2nd generation: 1992-2002
 - n = 1.010...1.030
 - new: hydrophobic
 - 3rd generation: 2002-
 - n = 1.030...1.080
 - new: solvent

DIRC

BaBar: Detector of Internally Reflected Cherenkov light:

- 144 quartz rods, 1.7x3.5x490cm³, highest grade optical polish
- angle of Cherenkov light wrt. track conserved
- glued to quartz wedges to fold image
- 6000l pure H_2O expansion tank ($n_{H2O} \sim n_{quartz}$)
- readout: 10752 PMT
- single photon resolution: $\sigma_{C,\gamma} = 10.2$ mrad

$$\sigma_{t,\gamma} = 1.7 \text{ns}$$

track resolution:

(for no systematic errors) $\sigma_{track,\gamma} = -$

Particle Physics Detectors, 2010

Quartz Bar

VI/12

Stephan Eisenhardt

Time of Propagation

- Hamamatsu H-9500 Flat Panel MaPMT (256 pixels, 3x12mm pad, σ_{TTS} ~220ps)
- Hamamatsu H-8500 MaPMT (64 pixels, 6x6mm pad, σ_{TTS} ~140ps)
- Burle 85011-501 MCP-PMT (64 pixels, 6x6mm pad, σ_{TTS} ~50-70ps)

Particle Physics Detectors, 2010

Ring Imaging Cherenkov Counter

Stephan Eisenhardt

Particle Physics Detectors, 2010

VI/14

Pattern Recognition

Proximity Focusing RICH

- □ Belle upgrade: end-cap RICH
 - proximity focusing = compact design \rightarrow usable in storage ring detector!
 - aerogel radiator, gap: O(20cm), high spatial resolution γ detection
- □ conventional design:

n=1.047

4cm thick aerogel

- multiple radiator design:
 - 2 layers, each 2cm thick
 - n₁=1.047, n₂=1.057

n=1.028 Barrel ACC n=1.013 n=1.020 n=1.015 n=1.010 360mod Endcap ACC n=1.030 228mod 3" FM-PMT 2.5" FM-PMT array of 2 layer flat-panel MaPMT aerogel

- π/K separation with focusing configuration: ~ 4.8σ @4GeV/c Particle Physics Detectors, 2010 Stephan Eisenhardt

Particle Identification - Summary

	momentum range			
method:	fixed target	storage ring		
	L=30m	L=3m	requirements	
dE/dx	0.22GeV/c	0.22GeV/c	σ _r =2% (3%) for 30m (3m)	
time of flight	<4GeV/c	<1GeV/c	σ _t =300ps	
DIRC, TOP	n.a.	24GeV/c	highest optical quality surface	
Cherenkov threshold	<80GeV/c	<25GeV/c	10 photoelectrons	
RICH, prox. focus. RICH	1150GeV/c	0.74.5GeV/c	single γ , O(mrad) resolution	
DISC	<2000GeV/c	n.a.	achromatic gas counter	
dE/dx multiple ionisation meas.	1.2100GeV/c	1.545GeV/c	σ _r =2% (3%) for 30m (3m)	
transition radiation	γ>1000	γ>1000	X-ray detection with E>10keV	
	15 LENGTH F (E) H10 - T.O.F. 10 - INDISATION	OR π-K SEPARATION THRESHOLD CHERENKOV TRANSITION RADIATION		

10

10²

MOMENTUM (GeV/c)

10³

104

Particle Physics Detectors, 2010

0.1

1

VI/17

Trigger - Basics

Trigger:

time-stamp for occurrence of defined event

Walk:

- variations in amplitude or rise time
 - \rightarrow different rel. timing of leading edge wrt. signal
- finite amount of charge to trigger disciminator
 - \rightarrow slope dependent excess over threshold needed

Jitter:

Threshold

Output A

Output B

- noise & statistical fluctuations in signal

Trigger Concepts

□ Electron collider:

- large cross section for studied processes
- often: data taking in resonance \rightarrow "take all" approach
- i.e. buffer event bursts and write to disc between event bursts \rightarrow just provide the bandwidth...
- □ Hadron collider:
 - dominated by background
 - seek "needle in haystack"
 - \rightarrow sophisticated, highly efficient online event selection needed
- □ Tiered trigger for online event selection: cut background, leave maximum of signal
 - level 0: hardware coded
 - fast: O(μs), deterministic in time
 - e.g. hit multiplicities, (transversal) energy sums for single detector sub systems
 - level 1: hardware or (preferably) software coded
 - factor 10-100 more time, still deterministic in time
 - merging level 0 data for fast detector sub-systems
 - level 2,3: parallel computing
 - event building \rightarrow physical parameters as offline
 - parallel processing of events, variable time, single event might be time consuming

• application of "physics filters": cuts on high level parameters as close as possible to offline analysis Particle Physics Detectors, 2010 Stephan Eisenhardt VI/19

1990: transputer today: PC farm

Dead Time, Latency & Bandwidth

- □ Accelerator clock:
 - gives time structure for events
 - defines data rate and requirements for data buffering and time to decide
- Dead time:
 - level 0 decision needs longer than clock cycle \rightarrow may miss valid data for BG event \rightarrow signal buffering: circular pipeline, continuously filled, event readout on L0 trigger
- □ Latency:
 - a) individual event: delay between event and trigger signal
 - b) trigger system: maximum allowed time for trigger decision
 - dead time free:

if trigger decision guaranteed to be faster than one pipeline revolution

- Bandwidth:
 - regard at each stage: bandwidth = event size x output rate
 - usually limited by: available technology and cost for computing and networking
 - total bandwidth get split into fixed or tuneable "physics channels"
 - pre-scaling: reduce large contributions by known fraction to enhance rare events

write **I**

Modern Example: LHCb

evel-1

80

70E

20

맘

15

Level 0:

- 40MHz input
- 1MHz output: 1/40 reduction
- 4µs latency:
 - TOF+cables: <1000ns
 - processing: <1200ns
 - decision unit: <500ns
 - L1 efficiency (selection normalized) [%] 00 00 02 09 00 08 06 010 readout supervisor: <800ns
 - contingency: 500ns

Level 1:

- 1MHz input
- 40kHz output: 1/25 reduction
- variable latency up to 58ms

HLT:

- L2+L3
- 40kHz input
- 200Hz output to disc/tape: 1/200 reduction

Modern Example: LHCb

Particle Physics Detectors, 2010

Trailer – not presented

□ Trailer to course:

- beyond the time scale of the lectures...
- summary of integrated detector concepts
- as ideas for self-study to dig further

□ 1979: JADE, TASSO, PLUTO, MARK J

JADE – jet drift chamber Particle Physics Detectors, 2010

S3 – ABSORBER – PR2 S4 – ABSORBER – PR3 S5 – ABSORBER – PR4 Shower counters

Vertex Detectors

VERTEX DETECTOR

DRIFT CHAMBER

(dE/dx)

1983: UA1 & UA2: gaseous tracking chambers

 – central tracking Fig.8.16: Seitenansicht des UA1-Detektors zum Nachweis von Proton-Antiproton-

Wechselwirkungen bei 540 GeV Schwerpunktsenergie: 1. Zentraldetektor 2. und 5. Hadron-Kalorimeter, 3. und 4. Elektron-Photon-Schauerzähle 6. Myon-Detektor, 7. Spule für Dipolfeld, 8. und 9. Kleinwinkeldetek tor mit Kammern und Kalorimetern, 10. Kompensator-Magnete [UA1].

1982: SLC: silicon detectors

SLC – first CCD vertex

LEP

□ 1989: $\sqrt{s} = 80-205$ GeV e⁺e⁻ accellerator

Tevatron

HERA

- □ 1992: asymmetric ep-accellerator
- □ hadron calorimetry

Na48 & LHCb

\square fixed target experiments for precision K₀ (1997) and B₀ (2008) physics:

Atlas & CMS

Particle Physics Detectors, 2010

BaBar & Belle

□ 2000: B – physics at asymmetric e⁺e⁻ accellerators

Particle Physics Detectors, 2010

VI/32

ILC Detectors

- □ ~ 2015: three design collaborations:
 - each is "global"
 - SiD: Silicon Detector
 - silicon only
 - LDC: Large Detector Concept
 - large gaseous TPC
 - GLC: Global Large Detector
 - inner silicon, outer gaseous TPC

Particle Physics Detectors, 2010

Homestake

- □ 1969-1993:
 - 615 tons tetrachloroethylene
 - $v + {}^{37}\text{Cl} \rightarrow {}^{37}\text{Ar}(\tau=35\text{days})$
 - wash O(atom) a day!

– new: SAGE, GALLEX

Particle Physics Detectors, 2010

Super-Kamiokande

SNO

□ 1999: Sudbury Neutrino Observatory: 1000 tons of heavy water (D₂0)

Particle Physics Detectors, 2010

NOMAD & MINOS

1993: Neutrino Oscillation Magnetic Detector 2003: Main Injector Neutrino Oscillation Search

short "long base line": 835m

Particle Physics Detectors, 2010

long base line: 730 km

VI/37

era

10.2cm

12.5cm

layers

- 0.15MW source
- high energy ν_{μ} beam
- long baseline:732km
- handfuls of events/yr

return of the nuclear emulsion

OPERA

emulsion layers (44µm thick) + 200 µm plastic spacer

...swap brick if

BRICK: 57 emulsion foils & 56 interleaved Pb plates Stephan Eisenhardt

Particle Physics Detectors, 2010

Total target mass: **VI/38** 1766 t

ICARUS

Liquid Argon TPC: to study v_{τ} appearance

VI/39

NOvA

- \square most massive detector for $v_e \rightarrow v_\tau$ oscillation search
 - 'all' liquid scintillator (85% Sci, 15% PVC)

Particle Physics Detectors, 2010

HEGRA & Auger

□ air shower detectors:

- 1998: HEGRA atmospheric Cherenkov telescope
- 2004: Auger fluorescence & Cherenkov observatory

Atmosphere-bound - CREAM

Cosmic Ray Energetics and Mass

Particle Physics Detectors, 2010

Space-bound - AMS

- □ Alpha Magnetic Spectrometer:
 - to be mounted on ISS
 - launch: "2008"
 - particle physics detector in space:
 - antimatter
 - gamma rays
 - cold dark matter
 - earth's particle environment
 - ...

Particle Physics Detectors, 2010

Particle Physics Detectors, 2010