
EM 3 Section 5: Electric Dipoles

An electric dipole is formed by two point charges +q and −q connected by a vector a. The

electric dipole moment is defined as p = qa .

By convention the vector a points from the negative to the positive charge. Here we also
take the origin to be at the centre and a to be aligned to the z axis (see diagram)

Figure 1: Diagram of electric dipole aligned along z axis. Griffiths Fig 3.37

5. 1. Field of an electric dipole

We first calculate the potential and then the field:

V =
q

4πε0

(
1

r+
− 1

r−

)
(1)

where r± are the distances from the +ve(-ve) charge to the point r.

Now

r2
∓ = |r ± a/2|2 = (r2 ± a · r + a2/4) = r2

(
1± a

r
cos θ +

a2

4r2

)

Now consider the “far field limit” r � a

1

r±
=
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r

(
1∓ a

r
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a2

4r2

)−1/2

' 1

r

(
1± a

2r
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)
where O((a/r)2) indicates terms proportional to (a/r)2 or higher powers

Thus we obtain in the far-field limit

V =
qa cos θ

4πε0r2
=

p · r̂
4πε0r2

(2)

One can check that away from the charges this is a solution of Laplace’s equation (see tut)
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The components of the electric field E= −∇V are simplest in spherical polar coordinates:

Er = −∂V
∂r

=
2p cos θ

4πε0r3
Eθ = −1

r

∂V

∂θ
=
p sin θ

4πε0r3
(3)

To get a co-ordinate free form of the electric field we can use (see tutorial sheet 1)

E = −∇V = − 1

4πε0
∇
(
p · r̂
r2

)
=

1

4πε0

(
3(p · r)r
r5

−
p

r3

)
(4)

The important point to note is that a dipole field is 1/r3, whereas a point charge field is 1/r2

N.B. The above ‘far-field’ limit r � a can also be presented as an ideal dipole which is the
limit a→ 0, q →∞ but p finite. The ideal dipole is a useful approximation to the ‘physical
dipole’ for which the potential is given by (1) and

E = −∇V =
q

4πε0

[
r − a/2
|r − a/2|3

− r + a/2

|r + a/2|3

]
(5)

However the sketches look a little different:

Figure 2: Sketch of electric dipole field: ideal and ‘physical’ Griffiths Fig 3.37

Why dipoles matter I: Many molecules have a permanent dipole moment p (e.g. H20)
All others, and all atoms, acquire an induced dipole when placed in E field
Since atoms and molecules are (a) neutral and (b) almost pointlike, the ideal dipole concept
is crucial to understanding media see later.

5. 2. Interaction of dipole with external Electric Field

To calculate the force on a dipole in an external field Eext = −∇φ (note here we use φ for
the electrostatic potential of the external field) it is simplest to first calculate the potential
energy of the dipole in this field:

Udip = qφ(a/2)− qφ(−a/2)

' qa · ∇φ = −p · Eext

where we have made a Taylor expansion to first order in a.
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Thus Udip is minimised when the dipole is parallel to the field and maximised when antipar-
allel: you need ∆U = 2p|Eext| to reverse the direction.

Moreover we can compute the force felt by the dipole through

F = −∇Udip = ∇(p · Eext) (6)

There is no net force on a dipole in a uniform electric field (Eext does not depend on r), since
the two charges of a dipole experience equal and opposite force. However, in a non-uniform
field there is a force which moves the dipoles along the field gradient.

In a uniform external field there is still a torque which acts to align the dipole moment p
along the direction of Eext:

T = (a/2)× (qEext)− (a/2)× (−qEext) = p× Eext (7)

The work done by the torque in rotating the dipole from an aligned position through an
angle θ relative to the field is:

W =
∫ θ

0
Tdθ =

∫ θ

0
pEext sin θdθ = pEext(1− cos θ) (8)

To summarise

i) dipoles tend to align with an external field

ii) dipoles migrate up field gradients

5. 3. Why dipoles matter II

Let’s go back to the Taylor expansion of the electrostatic potential, this time for an arbitrary
bounded charge distribution confined to some region R

V (r) =
1

4πε0

∫
R

dV ′
ρ(r′)

|r − r′|

=
1

4πε0

∫
R

dV ′
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(r2 − 2r · r′ + r′2)1/2

=
1

4πε0

∫
R

dV ′
ρ(r′)

r

(
1− 2r · r′

r2
+

(r′)2

r2

)−1/2

' 1

4πε0

∫
R

dV ′ρ(r′)

[
1

r
+
r̂ · r′

r2
+

3(r̂ · r′)2 − (r′)2

2r3
+ · · ·

]

In the last line we have used the Taylor expansion

(1 + x)−1/2 = 1− 1

2
x+

3

8
x2 + · · ·

and gathered together terms according to the power of r i.e. we have made a far-field
expansion (r � 1) in powers of 1/r.
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We can tidy up the expansion to write it as

V (r) =
1

4πε0

Q

r
+

1

4πε0

r̂ · P
r2

+
1

4πε0

1

r3

1

2

∑
i,j

Qij r̂ir̂j + · · · (9)

where
Q =

∫
V

dV ′ρ(r′)

P =
∫
V

dV ′r′ρ(r′)

Qij =
∫
V

dV ′(3r′ir
′
j − (r′)2δij)ρ(r′)

Thus Q is the total net charge ; P is the dipole moment and
r̂TQr̂
r3

is the quadupole moment

with Q the quadrupole tensor (a basis dependent matrix). Each of the monopole, dipole,
quadrupole fields have distinct and characteristic shapes.

The first term (‘monopole term’) would normally be the dominant term and this would quite
reasonably represent the far-field charge distribution as that of a single lump of charge at
the origin.

However, when the total charge Q vanishes (as in the case of a dipole) it is the next term
(‘dipole term’) which is dominant. One can think of charge distributions where the second
term term also vanishes (e.g. electric quadrupole where P = 0 see figure) then the dominant
term becomes the third term (quadrupole term) and so on.

Figure 3: 4 charges forming an electric quadrupole Griffiths Fig 3.27

Significantly, each term in the expansion (9) is separately a solution of Laplace’s equation
(outside of the region V that contains the charges).

Thus one can use the idea of the method of images and use an image dipole

V =
1

4πε0

̂(r − r′) · P
|r − r′|2

at some point r′ outside of the physical region to solve Poison’s equation inside the physical
region, and fix certain boundary conditions on the boundary of the physical region.

An example is a conducting sphere in a uniform external field E0. The boundary condition
is that E is radial at the surface of the sphere which is an equipotential. This is achieved by
using an image electric dipole at the centre of the sphere - see tutorial. The result is that
on the surface of the sphere there is an induced charge distribution which is positive on one
side and negative on the other.
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