
Statistical Physics
Section 10: Mean-Field Theory of the Ising Model

Unfortunately one cannot solve exactly the Ising model (or many other interesting models)
on a three dimensional lattice. Therefore one has to resort to approximations. In this section
we will go through in detail a mean field approximation which is always the first recourse
in trying to construct a theory. Actually there are many possible mean field theories, but
they all share the same spirit. Here we present the simplest version which is known as Weiss
mean field theory.

10. 1. The mean-field approximation

Recall that the Ising configurational energy is

E({Si}) = −h
∑

i

Si − J
∑

<ij>

SiSj (1)

Consider all contributions involving spin j

ε(Sj) = −hSj − JSj

n.n∑
k

Sk (2)

where the sum is over nearest neighbours (n.n.) k of site j.

We now approximate this contribution by replacing the Sk by their mean value

εmf (Sj) = −hSj − JSj

n.n∑
k

〈Sk〉 = −hmfSj (3)

where
hmf = h + Jzm (4)

and m, the magnetisation per spin, is just the mean value of any given spin

m =
1

N

∑
i

〈Si〉 = 〈Sk〉 ∀k (5)

Thus the mean field approximation is to replace the configurational energy (1) by the energy
of a non-interacting system of spins each experiencing a field hmf . For this problem we can
write down the single-spin Boltzmann distribution straightaway

p(Sj) =
e−βεmf (Sj)∑

Sj=±1 e−βεmf (Sj)
=

eβhmf Sj

eβhmf + e−βhmf
(6)

However, we still have a consistency condition to fulfil: the value of the magnetisation m
predicted by (6) should be equal to the value of m used in the expression for hmf (4). Thus
we require

m =
∑

Sj=±1

p(Sj)Sj

=
eβhmf − e−βhmf

eβhmf + e−βhmf
= tanh(βhmf ) (7)
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and we arrive at the mean-field equation for the magnetisation

m = tanh(βh + βJzm) (8)

First we will consider the case h = 0 (zero applied field). The solutions of

m = tanh(βJzm) (9)

are best understood graphically. We see that for low β (high T ) the only solution is m = 0

Figure 1: Picture of tanh(βJzm) versus m and the straight line m versus m. The intersec-
tions give the solutions of (9)

whereas for high β (low T ) there are three possible solutions m = 0 and m = ±|m|. The
solutions with |m| > 0 appear when the the slope of the tanh function at the origin is greater
than one

d

dm
tanh(βJzm)

∣∣∣∣∣
m=0

> 1 (10)

Using the expansion of tanh for small argument

tanh x ' x− x3

3
(11)

(actually we only need the first term at this point), we find the condition (10) is

βJz > 1

which gives, remembering β = 1/kT ,

Tc =
zJ

k
(12)

Thus for T > Tc only the paramagnetic m = 0 solution is available, whereas for T < Tc we
also have the ferromagnetic solutions ±|m|. These are the physical solutions for T < Tc as
we shall see in the next subsection.

10. 2. Critical Behaviour

Consider again equation (9) which becomes using (12)

m = tanh
(
m

Tc

T

)
(13)
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We wish to analyse the emergence of the ferromagnetic solutions when T is near Tc, that is,
in the critical regime where T ' Tc and |m| � 1. Using (11) we obtain

m = m
Tc

T
− m3

3

(
Tc

T

)3

Thus m = 0 or

m2 = 3
(

T

Tc

)3 (
Tc

T
− 1

)
(14)

We now define the reduced temperature t by

t =
T − Tc

Tc

(15)

which gives
T

Tc

= 1 + t
Tc

T
=

1

1 + t
. (16)

The reduced temperature t measures the proximity to the critical point. When t is small
(14) becomes (exercise)

m2 = 3(1 + t)3
(
1− 1

1 + t

)
' −3t

Thus

T > Tc m = 0
T < Tc m ' ±(3|t|)1/2 (17)

It is important to understand that what we have done is to identify the leading behaviour
in t for t small

We now proceed to compute the susceptibility

χ =
∂m

∂h

∣∣∣∣∣
h=0

(18)

and we should now expand (8). To capture the leading order behaviour in t, h it suffices to
expand to first order in h:

m = m
Tc

T
+ βh− m3

3

(
Tc

T

)3

Taking the derivative w.r.t. h yields

χ = χ
Tc

T
+ β − χm2

(
Tc

T

)3

or

χ =
β(

1− Tc

T
+ m2

(
Tc

T

)3
) (19)

Then we find for t small and using the appropriate expression for m (m = 0 or (14))

T > Tc χ =
β(

1− Tc

T

) ' β

t
(20)

T < Tc χ =
β(

1− Tc

T
+ 3(Tc

T
− 1)

) ' β

2|t|
(21)

60



Figure 2: Sketch of the critical behaviour of |m| and χ as functions of the reduced temper-
ature t

Again we have just identified the leading behaviour as t → 0

The critical behaviour is sketched in the figure. Note how |m| > 0 emerges in a non analytic

way since
∂|m|
∂t

diverges at t = 0. Also note the divergence in χ (the response function to

the applied field) at t = 0.

Finally we note that if we had taken the m = 0 solution below Tc in (19) we would have
obtained a negative response function which is simply unphysical. Therefore below Tc the
ferromagnetic solution is the physical one.

10. 3. Limitations of Mean Field Theory

The essence of the mean field assumption is the neglect of correlations between spins i.e. we
effectively replace

〈SiSj〉 ' 〈Si〉〈Sj〉 i 6= j (22)

Note we can write the energy (1) in the form

E({Si}) = E0 − h
∑
j

Sj , (23)

where E0 = −J
∑

〈ij〉 SiSj, which is the same form as that which we used to discuss the
fluctuation response theorem in Section 3 when we identify f = h and A =

∑
j Sj. Then we

know that

χAA =
∂〈A〉
∂f

= β
[
〈A2〉 − 〈A〉2

]
(24)

In our case

χ =
∂m

∂h
=

1

N
χAA =

β

N

∑
jk

[〈SjSk〉 − 〈Sj〉〈Sk〉] (25)

This equation is exact. But if we now naively insert the mean field approximation (22) then
all terms in the sum with j 6= k will vanish and we are left with

χ =
β

N

∑
j

[
〈S2

j 〉 − 〈Sj〉2
]

= β[1−m2] (26)

Clearly (26) does not diverge at Tc so the mean field approximation is inconsistent with regard
to χ. The root of the problem lies in the neglect of correlations which become important as
the critical point is approached.
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Let us call

Gij = 〈SiSj〉 − 〈Si〉〈Sj〉 (27)

= 〈(Si − 〈Si〉)(Sj − 〈Sj〉)〉 (28)

Clearly Gij measures the correlations between the fluctuations ∆Si = Si−〈Si〉 — a positive
Gij implies that the fluctuations of the spins about their mean value are correlated.

We now define the correlation length:

Let Rij be the distance between spins i and j. For large Rij we expect

Gij ' C(Rij)e
−Rij/ξ (29)

where C is some slowly varying function but e−Rij/ξ ‘cuts off’ the correlation function at the
correlation length ξ. Thus ξ is the scale at which correlations decrease significantly.

When T > Tc so that 〈Si〉 = 0 a typical microstate will consist of clusters of up and down
spins with the overall magnetisation being zero. Intuitively the correlation length gives a
measure of the (linear) size of the largest clusters of correlated spins. See figure for a one
dimensional illustration. As the temperature is decreased to the critical temperature the

Figure 3: Sketch of a typical configuration of spins above Tc which consists of clusters of
correlated spins but zero overall magnetisation. ξ is the length of the largest clusters

size of the clusters diverge and we expect ξ to diverge.

One can refine mean-field theory to include the calculation of the ‘two-point’ correlation
function Gij. This is similar in spirit to the Debye-Hueckel theory but a little too technical
than we have time for here. The result is that a correlation length is predicted which grows
like

ξ ∼ |t|−1/2 (30)

and clearly diverges at Tc.

However the mean field theory is still inconsistent due to the neglect of three-point, four-
point and higher order correlations. Basically near criticality correlations and fluctuations
on all scales become important!

10. 4. Summary of mean-field picture and comparison with experiment

The mean field theory predicts
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• The critical point Tc = zJ
k

at h = 0

• The singular, critical behaviour is described by

m ' m−|t|β̃ (T < Tc) (31)

χ ' c±|t|−γ (32)

ξ ' ξ±|t|−ν (33)

β̃, γ, ν are known as critical exponents and take mean-field values β̃ = 1/2, γ = 1,
ν = 1/2.

N.B. The standard notation for the order parameter (magnetisation) exponent is β and
there is an obvious clash with inverse temperature hence we use a tilde to be clear.

Often one sees written, for example,

m ∼ |t|β̃

the precise meaning of which is

lim
|t|→0

ln m

ln |t|
= β̃ (34)

Actually there are even more critical exponents. For example, one can define the zero-field
heat capacity

Ch =
∂E

∂T

∣∣∣∣∣
h=0

∼ |t|−α (35)

and near and below TC one can characterise the discontinuity in the order parameter across
the coexistence line by

h ∼ |m|δsign m (36)

In the tutorial you are invited to work out the mean-field values α = 0 and δ = 3. The set
α, β̃, γ, δ, ν characterise the critical point. It turns that some of these exponents are implied
by the others and in fact there are only three independent exponents which we can take as
β̃, γ, ν.

Now the experimental data reveals that

• Systems do exhibit such singularities

• but the critical exponents differ from the mean field values

• however critical exponents are system independent e.g. for fluids, binary alloys and
many magnets it has been found that β̃ = 0.31, γ = 1.25, ν = 0.64 in three dimensions.
Thus apparently unrelated systems share the same set of critical exponents. This is
referred to as Universality and remained a mystery for many years.

To summarise, mean-field theory is successful in that it qualitatively describes the critical
behaviour but is quantitatively incorrect. Moreover as we shall find next section it is quali-
tatively incorrect in one dimension. On the other hand as we shall discuss later mean field
theory does in fact give the correct critical exponents in high enough space dimension (d ≥ 4
for the Ising model, which may or may not be reassuring!).
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