Statistical Physics—Section 2: Assignment of Probabilities and Formulation of
Statistical Mechanics

2. 1. Assignment of Probability

Idea {p}, should be such as to maximise S subjects to constraints imposed
by the available information

i.e. {p}, should only reflect the information available and are otherwise unbiased. In this
way it is a rational assignment of probability

Constraints: These typically take the form of expectation values of some observables

Procedure: Suppose we have two known constraints
(y) = Zpiyi (1)
(z) = Zpizi (2)
and of course we should not forget the constraint

We wish to maximise the missing information, or Gibbs entropy,
S:—kZpilnpi (4)

subject to these constraints.

The maximization can be done using Lagrange’s method of undetermined multipliers. To
extremize a function f(z;) of a list of variables x;, subject to the constraint that another
function g(z;) has a prescribed value gg, the procedure is to construct

h(z;) = f(zi) — Ag(w:) (5)
and then extremize h by requiring
oh
=0 6
oz, (6)

for all the variables z; in the list. (In the present case the variables x; are, of course, the
probabilities p; for the various microstates.) The ‘undetermined’ multiplier A is then chosen
so as to make sure the constrained quantity has the desired value. The label ‘undetermined’
is because we often don’t have to work out the particular value for lambda.

If there are several constraints, each is implemented with its own Lagrange multiplier.

To justify the procedure consider the condition for f to be extremised

o
dfzzéidxizo (7)



but because of the constraint the set dx; are not independent i.e. g must be kept constant:
]

dg = —dz; =0 8

-5 )

However, if we subtract some particular multiple A of (8) from (7) we end up with indepen-
dent conditions
of \ dg

to be satisfied for each ¢, which yields (6).

0 (9)

Mathematical Aside: What’s going on is perhaps easiest to see geometrically. Recall
that Vg is in the direction of maximal increase of g or equivalently is orthogonal to the
level surfaces of g. Thus under the constraint that g is constant we must have dr - Vg = 0.
However if f is to be extremised we must have df = dr -V f = 0 from which we deduce that
Vg and V f are parallel which yields (9). End of aside

Ezxample 1: First consider the case where there are no given constraints other than

sz' =1
=1

Then
h=—k Zpi Inp; — Azpi
Then our conditions (6) become

oh
o —k[np;+1] —A=0= p; = exp[—1 — \/K]

making p; constant for all 7. But the normalisation constraint requires

. 1
sz‘:TeXP[—l_)\/k]zl :>pz':;
i=1

Example 2: Now apply the method of Lagrange Multipliers to the three constraint example
(1,2,3). We require that for all states i,

82 =k pilnp =N p =AY e =AY zp| =0
’ j j j j

This gives

or, rearranging (check you can do this!),

pi = exp(—1 — A /k) exp(—[A\yyi + A.z] k) .



The first factor, exp(—1 — A1 /k) is a constant (independent of i) and is there to ensure
normalization:

1= zi:pi = exp(—1 — Al/“zi:e’(p {_ (WH

thus

1
pi= exp(—[M\yyi + A2zi]/k) where Z = Z exp(—[Ayyi + Azzi]/k)

2. 2. Formulation of Statistical Mechanics

Recall that the most detailed description possible of the assembly is the microstate. Most
generally, embracing quantum mechanics, the microstate ¢ is defined to be the ith solution
of the Schrodinger equation (S.E.) for the assembly. Microstate i has energy E; — note
that E;({X}) where {X} are extensive thermodynamic co-ordinates such as volume V', or
number of particles etc.

The macroscopic information which specifies the equilibrium state is the (expectation) values
of extensive observables e.g. the internal energy, defined as

E= ZpiEi

The different ensembles of Statistical Mechanics

At this stage the word ‘ensemble’ is synonymous with (probability) distribution. Later we
shall we will look at the idea of an ‘ensemble’ more closely.

Microcanonical Ensemble: Here the assembly is isolated and only fixed energy states are
accessible. So the microstates all have the same energy and otherwise we have no information
about the assembly. This corresponds to example 1 and

1
R 1
pi Q (10)

where €2 is the number of available microstates. Thus, maximising .S in the microcanonical
ensemble recovers the ‘Principle of equal a priori probabilities’ (PEAPP).

Canonical Ensemble: Here the assembly may explore states of different F; i.e. we can
think of the assembly being connected to some heat reservoir to allow this. The observable
E specifies the equilibrium state. Maximising S subject to this constraint (plus probability

normalisation)gives
0
S—/\Ezijj - Alzpj =0
J J

Op;

which leads to

1
Di = Z eXP(_AEEi/k) where Zc - ZeXp(_AEEi/k) (11>




Z. is the canonical partition function. As we shall see when we identify the Lagrange mul-
tiplier Ag, the canonical distribution is just the Boltzmann distribution.

Grand Canonical Ensemble: Here the assembly may explore states of different energy
and states with different particle number N. We refer to this as an open assembly. Since
N is an extensive thermodynamic variable it actually affects the solutions of S.E therefore
we specify our states ¢, N with energy E; y meaning that it is the ith solution of S.E. for an
assembly with N particles. To allow both energy and particle number to fluctuate we can
think of the assembly being connected to both heat and particle reservoirs. The observables
E and N specify the equilibrium state. Maximising S subject to these constraint (plus
probability normalisation) follows the worked example 2

0
3]%‘,]\7

S —Ap Zpi,NEi,N — AN Zpi,NN -\ sz',N =0

i, N i,N i,N

Which leads to

1
PiN = % exp(—AgEin/k — AnN/k) where Z,. = Zexp(—/\EEi’N/k — AvN/k)

ge i N

(12)
Z4. is the grand canonical partition function.

Thus we have derived the three main ensembles (or distributions) of statistical mechanics.
They should look familiar except for the presence of the Lagrange multipliers. In order to
identify these we must recap some thermodynamics.

2. 3. Thermodynamics

Let us review the combined 1% and 2"¢ laws. For a fluid or ‘PVT" system we have

dE = TdS — PdV (13)

where P is the pressure. You should memorise this.

More generally we can write

dE =TdS+ ) f,dX, (14)

v

where f, is an applied force and X, is a thermodynamic variable (sometimes referred to as
a displacement) conjugate to that force. e.g. in the PVT example the ‘force’ is —P and the
conjugate displacement is the volume. In a magnetic system the force would be the external
magnetic field H and the displacement would be the magnetisation M. (Beware that there
are many different notations for applied field and magnetisation.) Note that the forces are
intensive (i.e. don’t depend on the size of the assembly) but the displacements X., are
extensive (i.e scale linearly with the size of the assembly).

Then one can generalise further to include the effect on the internal energy of changing the
number of particles or indeed the number of each species of particle

dE =TdS+ ) f,dX, + ) padN, (15)

Y «




This is our most general form of the 15¢/2" law. It defines the chemical potential p,
as the change in internal energy by adding a particle of species a to the system. Clearly
the internal energy of the system should change due to e.g. the kinetic energy of the added
particle. The definition of the chemical potential may be written

()
Ha = — .
ONa/ s1x,)

It is the increase in internal energy due to adding a particle, with the other thermodynamic
co-ordinates S, { X, } held fixed.

2. 4. Thermodynamic Potentials

From (15), the energy is a ‘natural function’ of S, the displacements X, and the particle
numbers N,. In principle, we should obtain the equilibrium state at ﬁxed S, X, N,
by minimising the energy with respect to other variables with these natural variables held
fixed. However, no practical instrument exists for the measurement and control of entropy
experimentally! Instead what is more convenient is to keep the temperature fixed. Thus we
would like to change to a thermodynamic potential with natural variable T" rather than S.

This is easily done by defining
F=E-TS definition of Helmholtz free energy (16)

(In some texts the Helmholtz free energy is denoted A.) For clarity consider a PV'T system
and use (13) then

dF = d(E = TS) = dE — TdS — ST = —SdT — PdV

= T,V are natural variables for F’

oOF OF
= 5= ‘(a—T)V,N P= ‘(W)T,N 1"

In the last expressions we have added a reminder that the above equations were derived at
fixed N. The fact that T,V are natural variables for F' means that to obtain the thermody-
namic state we should minimize F' at fixed T, V' (more on that later).

Mathematical Aside: Actually what we have done is known as a Legendre Transform.
More generally consider a function f({z;}) i =1...k then

k

Then we can let g = f — 7 x; and

i=r+1 Ui

dg = Z w;dx; — Z z;du;

i=r+1

and ¢ is a ‘natural function’ of x1...x,, u,11...ug and is a Legendre Transform of f.



The idea is that the function g should contain the same information as f. To get a feeling
for this consider a function of one variable f(x) which is specified by the values over a set of
points z. But we could also specify the function (up to some overall constant) by the values

0
of the derivative u(x) = 8_f at the set of points i.e. the envelope of tangents to the function.

Now these tangents are straight lines each with a slope u and its intercept, g, say along the
y axis i.e. the point f(x) = g+ ux. Now one can think of g(u) as the intersect as a function
of slope, then

g(u) = f(x) —ux . (18)

g(u) contains the same information as the original relation f(x) and is the Legendre trans-
formation. End of aside

We can continue this process to construct thermodynamic potentials which are natural func-
tions of different sets of variables

(T,V,N) F=E-TS Helmholtz Free Energy
(S,P,N) H=FE—(—PV) =FE+ PV Enthalpy
(T,P,N) G=F—(-PV) =E-TS+ PV  Gibbs Free Energy
(T,V, n) d=F-Nuy =FE-TS—-Nu Grand Potential

All these thermodynamic potentials provide minimisation principles e.g. to find the equilib-
rium state at fixed T, P, N we minimise the Gibbs free energy. Of particular significance in
statistical mechanics are F', the Helmholtz Free Energy, and ®, the Grand Potential.

Extremisation Principles:

Recall that our original programme was to maximise S subject to constraints. If the con-
straint is £ (Canonical ensemble) then we ended up imposing

0
a_pi S—)\E%:p]EJ —Alzj:pj = 0
which, if we think about it, is precisely the same as

1. minimising F = E — T'S where A\g = 1/T

2. minimising E subject to the constraint of constant S (i.e. we would have a Lagrange
multiplier Ag = 1/\g)

Thus the different extremisation principles (maximisation of entropy, minimisation of free
energy, minimisation of energy etc) are all intimately related and which one applies is deter-
mined by which ensemble one is working in, i.e. which constraints apply and which variables
are held fixed.

Gibbs-Duhem relation: Going back to the energy we know that the energy should be
extensive i.e. proportional to the size of the system. Similarly all of the natural variables of

10



the energy are extensive. This implies that multiplying each extensive variable by a factor b
results in an increase of the energy by a factor b

bE(57 {XV}v {Noc}) = E(bS, {bXW}v {bNOé})

where b is a positive parameter. Now we differentiate both sides with respect to b

B(S.{X) (V) = S E0S, (0.}, (b.)

= TS+ vaX’y + Zuaﬁa
¥ e

where we have used (15). But then

dE = TdS + ST + Y _[f,dX, + X,dfy] + > [tadNo + Nadpa]
Y «

and subtracting (15) yields

0=S5dT+ Y X,df, + > Nadpa (19)
¥ @

This is known as the Gibbs-Duhem relation and implies that the intensive variables T, { f,}
and {/,} are not all independent. For example, in a PVT system with one species, only
two of T, P, u are independent since (19) becomes

0= SdT — VAP + Ndu (20)

i.e. a change in 7', P implies a specified change in

2. 5. Identification of Lagrange multipliers and the bridge equations

Canonical distribution

Let us consider first the canonical ensemble. The idea is to work out from the form of the
probability (11), an expression for dF then compare with the first/second law of thermody-
namics (14). The microscopic definition of the total energy of an assembly is

E= ZpiEi (21)

But we know from quantum mechanics, that changing the volume of the ‘box’ for example

must change the energy levels. It follows that a change dX, must give rise to a change in
the mean energy. Therefore a change in the mean energy has two types of contribution, one
from changes in p; and one from changes in F; due to X.:
— OF OF

dE = —dp; + —

—op; T 40X,

OF

dx,
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where the last line follows from (21). We now consider a small change in the entropy. Since S
is just a function of the probabilities p;, a change in .S comes from a change in the probability
distribution, and this may be expressed as

08
ds = —dp;
zi: Op; b
= —kZ [Inp; + 1] dp;
where we have used the definition of the Gibbs entropy and the normalization condition in

the form
Z dp; =0 (24)

i.e. since the sum of all probabilities must always be 1 the sum of any changes in the p; must
sum to zero. By substituting from (11) for p;, and again using the condition ), dp; = 0, we
may further write our expression for the change in the entropy as

dS =AY Edp;,
Then with a little rearrangement (22) becomes

dE = —+) —dX, (25)
Y

Comparison with the thermodynamic expression for the change in mean energy, as given by
equation (14), then yields the Lagrange multiplier as

Ag = 1/T, (26)

along with an expression for the thermodynamic ‘generalised forces’

OF
= . 27
f=ax 27)
For example the pressure is given by

OF OE;
P === — . 28
av — &y 28)

: . . OE;

(The latter equation can be used to introduce the instantaneous pressure P; = e such

that the mean pressure takes the form
i

as is used in Tutorial 2.7.)
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Having identified the Lagrange multiplier we can now write the Canonical distribution in
the familiar form,

1
pi= exp(—(E;) where Z, = Zexp(—ﬁEi) (29)

[

where we have used the convenient abbreviation

1

==

(30)

Substituting the above form for p; into equation (4) we obtain an expression for the entropy
in terms of the partition function and the mean energy, thus:

E
S=-k> pi (B —nZ) = — + kInZ, (31)

Or, recalling the Helmholtz free energy F = E — T'S, we may rewrite the above equation as

F=—kThnZ (32)

This remarkable result is often referred to as a ‘bridge equation’, as it provides a bridge
between the microscopic and macroscopic descriptions of an assembly. Basically we get the
helmholtz free energy, a potential we introduced in section on macroscopic grounds, from
the canonical partition function which comes from summing over microscopic states. The
basic procedure of statistical physics is essentially to obtain an expression for the partition
function from purely microscopic considerations, and then to use the bridge equation to
obtain the thermodynamic free energy. Thus we come from the microscopic description to
macroscopic properties.

Grand Canonical distribution

We follow the same procedure used for the canonical distribution and write

— OE
dE =) Eindpin+ Y o 4% (33)
ol

i, N ¥

One subtle point here is that changes in N lead to changes in p; x but not to any changes
in E; x since these are calculated for the fixed allowed values of N. The change in entropy
may be expressed as

08

S =3 == dpin=—kD_Inpiydpiy, (34)
N 9PN iN

where we have used the definition of the Gibbs entropy and the normalization condition in

the form ),  dp;x = 0. By substituting from (12) for p; v, and again using the condition

Zz} ~y dpin = 0, we may further write our expression for the change in the entropy as

dS =Y " [AgE; + AvN] dp;y - (35)

i,N
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Finally we consider
dN =) Ndp;n, (36)

and equation (34) becomes
dS =AY Eindpiy+ AvdN .
i,N
Then with a little rearrangement (33) becomes

— dS Ay
dE =2 — —dN
Iy Z 7!

We compare this to the version of the first/second law (15) for one species

dE =TdS + udN + > f,dX,

~

and identify

L
E T N EM T (37)

Having identified the Lagrange multipliers we can now write the Grand Canonical distribu-
tion in the familiar form,

PiN = exp(—fB(E; — Np)) where Z,. = Zexp(—ﬁ(Ei — Np)) (38)

Z,

where again we have used § = 1/kT

Substituting the above form for p; x into equation (4) we obtain an expression for the entropy
in terms of the partition function, the mean energy and mean particle number, thus:

E uN
S=—k Zpi,N [=BE; + BuN —In Z,] = T MT +kln Zy (39)

Or, recalling the Grand potential ® = E — T'S — uN, we may rewrite the above equation as
)

= kTl Z,, (40)

Again we have a remarkable ‘bridge equation’ connecting the microscopic and macroscopic
descriptions of an open assembly.

2. 6. Ensembles

In deriving our distributions we used the a priori definition of probability: we used the
available information then constructed rational probabilities representing our degree of belief
that the assembly would be in microstate i. In order to use the frequency definition of
probability we can introduce the concept of an ensemble.

14



Figure 1: The idea of an ensemble: the ‘megasystem’ is divided up into a large number M
of assemblies e.g. the black square is one assembly

An ensemble is a very large number of copies, M, of the same assembly i.e. an assembly
of assemblies if you like. Then the probability of microstate ¢ is given by the number of
assemblies in microstate ¢ divided by M

m;
p; = lim —

Practically one can think of a block of material: each assembly being a small piece of the
whole block. Even though each of the many pieces is small, they still contain Avogadro size
numbers of atoms so we can have both the number M of assemblies large and the number
N of particles in each assembly large

The megasystem is isolated from the rest of the universe so all microstates of the megasystem
are equally likely.

In tutorial question 1.4. it is shown how using the Boltzmann definition of entropy for the
whole ensemble yields the Gibbs definition of entropy for each assembly.

One constructs the Canonical ensemble for the assemblies by allowing them to exchange
energy with each other. Therefore for each assembly the rest of the assemblies act as a heat
reservoir.

Similarly one construct the Grand canonical ensemble for by allowing the assemblies to
exchange energy and particles with one another. Thus for each assembly the others act as
a heat and particle reservoir. This lends itself to naturally to considering a small portion of
a fluid, say, where the particle number will clearly fluctuate due to particles moving in from
neighbouring assemblies.

Actually, the ensemble construction we have just described defines the probability of a state of
an assembly using the frequency definition and is the old-fashioned route. In our assignments
of probabilities we have actually bypassed the need for this construction by using an a priori
information definition of probability to obtain the probability distribution for an assembly.
However the terminology ‘ensemble’ endures and we will continue to uses it as a synonym
for distribution. The idea of a large number of copies of an assembly will prove useful later
on when we consider dynamics.
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2. 7. Summary

Let us summarise our achievements in this section.

e By maximising the missing information, or Gibbs entropy, subject to various con-
straints we have derived the three standard ‘ensembles’ (or distributions) of Statistical
mechanics: Microcanonical, Canonical and Grand Canonical

e The Lagrange multipliers that enter into the maximisation procedure have been iden-
tified with intensive thermodynamics variables: temperature and chemical potential.

e In the tutorial you are invited to show how two systems in equilibrium under exchange
of a certain quantity should share the same value of the Lagrange multiplier corre-
sponding to that quantity. For example systems in equilibrium with respect to energy
exchange should share the same value of Ag i.e. the same temperature. This recov-
ers the 0" Law of thermodynamics. Similarly systems in equilibrium with respect to
particle exchange should share the same value of Ay i.e. the same chemical potential.

Thus, remarkably, the abstract mathematical entities, Lagrange multipliers, become
the concrete physical concepts enshrined in thermodynamics, such as temperature.

e We have arrived at bridge equations which allow us to express macroscopic potentials
(e.g. free energies) in terms of the logarithms of the partition functions.

Again remarkably we link abstract mathematical entities (partition functions) with
established physical quantities (potentials and free energies).
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