Electromagnetism - Lecture 18

Relativity \& Electromagnetism

- Special Relativity
- Current \& Potential Four Vectors
- Lorentz Transformations of \mathbf{E} and \mathbf{B}
- Electromagnetic Field Tensor
- Lorentz Invariance of Maxwell's Equations

Special Relativity in One Slide

Space-time is a four-vector: $x^{\mu}=[c t, \mathbf{x}]$
Four-vectors have Lorentz transformations between two frames with uniform relative velocity v :

$$
x^{\prime}=\gamma(x-\beta c t) \quad c t^{\prime}=\gamma(c t-\beta x)
$$

where $\beta=v / c$ and $\gamma=1 / \sqrt{1-\beta^{2}}$
The factor γ leads to time dilation and length contraction
Products of four-vectors are Lorentz invariants:

$$
x^{\mu} x_{\mu}=c^{2} t^{2}-|\mathbf{x}|^{2}=c^{2} t^{\prime 2}-\left|\mathbf{x}^{\prime}\right|^{2}=s^{2}
$$

The maximum possible speed is c where $\beta \rightarrow 1, \gamma \rightarrow \infty$.
Electromagnetism predicts waves that travel at c in a vacuum! The laws of Electromagnetism should be Lorentz invariant

Charge and Current

Under a Lorentz transformation a static charge q at rest becomes a charge moving with velocity \mathbf{v}. This is a current!

A static charge density ρ becomes a current density \mathbf{J}
N.B. Charge is conserved by a Lorentz transformation

The charge/current four-vector is:

$$
J^{\mu}=\rho \frac{d x^{\mu}}{d t}=[c \rho, \mathbf{J}]
$$

The full Lorentz transformation is:

$$
J_{x}^{\prime}=\gamma\left(J_{x}-v \rho\right) \quad \rho^{\prime}=\gamma\left(\rho-\frac{v}{c^{2}} J_{x}\right)
$$

Note that the γ factor can be understood as a length contraction or time dilation affecting the charge and current densities

Notes:

Diagrams:

Electrostatic \& Vector Potentials

A reminder that:

$$
V=\frac{1}{4 \pi \epsilon_{0}} \int_{V} \frac{\rho}{r} d \tau \quad \mathbf{A}=\frac{\mu_{0}}{4 \pi} \int_{V} \frac{\mathbf{J}}{r} d \tau
$$

A static charge density ρ is a source of an electrostatic potential V A current density \mathbf{J} is a source of a magnetic vector potential \mathbf{A}

Under a Lorentz transformation a V becomes an \mathbf{A} :

$$
A_{x}^{\prime}=\gamma\left(A_{x}-\frac{v}{c^{2}} V\right) \quad V^{\prime}=\gamma\left(V-v A_{x}\right)
$$

The potential four-vector is:

$$
A^{\mu}=\left[\frac{V}{c}, \mathbf{A}\right]
$$

Relativistic Versions of Equations

Continuity equation:

$$
\nabla . \mathbf{J}+\frac{\partial \rho}{\partial t}=0 \quad \partial_{\mu} J^{\mu}=0
$$

This shows that charge conservation is Lorentz invariant!
Lorentz gauge condition:

$$
\frac{1}{c} \frac{\partial V}{\partial t}+\nabla \cdot \mathbf{A}=0 \quad \partial_{\mu} A^{\mu}=0
$$

Poisson's equations:

$$
\begin{gathered}
\nabla^{2} \mathbf{A}-\frac{1}{c^{2}} \frac{\partial^{2} \mathbf{A}}{\partial t^{2}}=-\mu_{0} \mathbf{J} \quad \nabla^{2} V-\frac{1}{c^{2}} \frac{\partial^{2} V}{\partial t^{2}}=-\frac{\rho}{\epsilon_{0}} \\
\partial_{\mu}^{2} A^{\mu}=-\mu_{0} J^{\mu}
\end{gathered}
$$

Electric and Magnetic Fields

The Lorentz force on a moving charge is:

$$
\mathbf{F}=q(\mathbf{E}+\mathbf{v} \times \mathbf{B})
$$

A static point charge is a source of an \mathbf{E} field
A moving charge is a current source of a \mathbf{B} field
Whether a field is \mathbf{E} or \mathbf{B} depends on the observer's frame
Going from the rest frame to a frame with velocity \mathbf{v} :

$$
\mathbf{B}^{\prime}=\frac{1}{c^{2}} \mathbf{v} \times \mathbf{E}
$$

Going from a moving frame to the rest frame:

$$
\mathbf{E}^{\prime}=-\mathbf{v} \times \mathbf{B}
$$

This formula was already derived from Induction (Lecture 6)

Notes:

Diagrams:

Lorentz transformations of E and B

The fields in terms of the potentials are:

$$
\mathbf{E}=-\frac{1}{c} \frac{\partial \mathbf{A}}{\partial t}-\nabla V \quad \mathbf{B}=\nabla \times \mathbf{A}
$$

Lorentz transformation of potentials:

$$
V^{\prime}=\gamma\left(V-v A_{x}\right) \quad A_{x}^{\prime}=\gamma\left(A_{x}-\frac{v}{c^{2}} V\right)
$$

Using this transformation and the Lorentz gauge condition the transformations of the electric and magnetic fields are:

$$
\begin{array}{rlr}
E_{x}^{\prime}=E_{x} & E_{y}^{\prime}=\gamma\left(E_{y}-v B_{z}\right) & E_{z}^{\prime}=\gamma\left(E_{z}+v B_{y}\right) \\
B_{x}^{\prime}=B_{x} & B_{y}^{\prime}=\gamma\left(B_{y}+\frac{v}{c^{2}} E_{z}\right) & B_{z}^{\prime}=\gamma\left(B_{z}-\frac{v}{c^{2}} E_{y}\right)
\end{array}
$$

Fields of Highly Relativistic Charge

A charge at rest has $\mathbf{B}=0$ and a spherically symmetric \mathbf{E} field
A highly relativistic charge has $\beta \rightarrow 1, \gamma \gg 1$

The electric field is in the $\hat{\mathbf{r}}$ direction transverse to \mathbf{v} :

$$
E_{x}^{\prime}=E_{x} \ll\left|\mathbf{E}^{\prime}\right| \quad E_{y}^{\prime}=\gamma E_{y} \quad E_{z}^{\prime}=\gamma E_{z}
$$

The magnetic field is in the $\hat{\phi}$ direction transverse to \mathbf{v} :

$$
B_{x}^{\prime}=0 \quad B_{y}^{\prime}=\gamma \frac{v}{c^{2}} E_{z} \quad B_{z}^{\prime}=-\gamma \frac{v}{c^{2}} E_{y}
$$

The electric and magnetic fields are perpendicular to each other with an amplitude ratio $\left|\mathbf{B}^{\prime}\right|=\left|\mathbf{E}^{\prime}\right| / c$

Notes:

Diagrams:

Notes:

Diagrams:

Electromagnetic Field Tensor

The electric and magnetic fields can be expressed as components of an electromagnetic field tensor:

$$
F^{\mu \nu}=\frac{\partial A_{\nu}}{\partial x^{\mu}}-\frac{\partial A_{\mu}}{\partial x^{\nu}}
$$

where $A=[V / c, \mathbf{A}]$ and $x=[c t, \mathbf{x}]$

$$
F^{\mu \nu}=\left(\begin{array}{cccc}
0 & E_{x} & E_{y} & E_{z} \\
-E_{x} & 0 & B_{z} & -B_{y} \\
-E_{y} & -B_{z} & 0 & B_{x} \\
-E_{z} & B_{y} & -B_{x} & 0
\end{array}\right)
$$

Maxwell's Equations in terms of $F^{\mu \nu}$

Source equations:

$$
\frac{\partial F^{\mu \nu}}{\partial x_{\nu}}=J^{\mu}
$$

M1:

$$
\begin{array}{lc}
\text { M1: } & \nabla . \mathbf{E}=\rho / \epsilon_{0} \\
\text { M4: } & \nabla \times \mathbf{B}=\mu_{0}\left(\mathbf{J}+\epsilon_{0} \partial \mathbf{E} / \partial t\right)
\end{array}
$$

$$
\mu=0, \nu=(1,2,3)
$$

$$
\mu=1, \nu=(2,3,0)
$$

(similarly for $\mu=2,3$)
No-source equations:

$$
\frac{\partial F^{\mu \nu}}{\partial x_{\sigma}}+\frac{\partial F^{\sigma \mu}}{\partial x_{\nu}}+\frac{\partial F^{\nu \sigma}}{\partial x_{\mu}}=0
$$

M2:

$$
\nabla . \mathbf{B}=0
$$

$$
(\mu, \nu, \sigma)=(1,2,3)
$$

M3:
$\nabla \times \mathbf{E}=-\partial \mathbf{B} / \partial t$
$(\mu, \nu, \sigma)=(0,1,2)(3,0,1)(2,3,0)$

Lorentz Invariance of Maxwell's Equations

As an example we consider the Lorentz transformation of M2:

$$
\begin{gathered}
\nabla \cdot \mathbf{B}=0 \quad \Rightarrow \quad \nabla^{\prime} \cdot \mathbf{B}^{\prime}=0 \\
\frac{\partial B_{x}}{\partial x^{\prime}}+\gamma\left(\frac{\partial B_{y}}{\partial y^{\prime}}-\frac{\beta}{c} \frac{\partial E_{z}}{\partial y^{\prime}}+\frac{\partial B_{z}}{\partial z^{\prime}}+\frac{\beta}{c} \frac{\partial E_{y}}{\partial z^{\prime}}\right)=0
\end{gathered}
$$

We note that:

$$
x=\gamma\left(x^{\prime}+\beta c t^{\prime}\right) \quad c t=\gamma\left(c t^{\prime}+\beta x^{\prime}\right) \quad \frac{\partial B_{x}}{\partial x^{\prime}}=\gamma\left(\frac{\partial B_{x}}{\partial x}+\frac{\beta}{c} \frac{\partial B_{x}}{\partial t}\right)
$$

Substituting into the previous equation and simplifying:

$$
\gamma \nabla \cdot \mathbf{B}+\frac{\gamma \beta}{c}\left(\frac{\partial B_{x}}{\partial t}-\frac{\partial E_{z}}{\partial y}+\frac{\partial E_{y}}{\partial z}\right)=0
$$

The second bracket is zero from M3: $\quad \nabla \times \mathbf{E}=-\partial \mathbf{B} / \partial t$

Hence $\nabla \cdot \mathbf{B}=\mathbf{0}$ and $\nabla^{\prime} \cdot \mathbf{B}^{\prime}=\mathbf{0}$ as required for Lorentz invariance.

Notes:

Diagrams:

