

First SPES School on Experimental Techniques with Radioactive Beams INFN LNS Catania – November 2011

Experimental Challenges Lecture 4: Digital Signal Processing

Tom Davinson

School of Physics & Astronomy

Objectives & Outline

Practical introduction to DSP concepts and techniques

Emphasis on nuclear physics applications

I intend to keep it simple ...

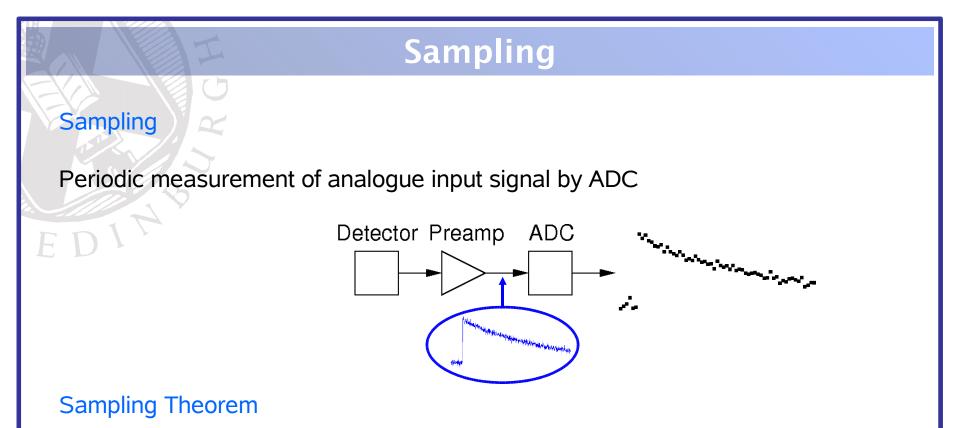
... even if it's not ...

... I don't intend to teach you VHDL!

- Sampling Theorem
- Aliasing
- Filtering? Shaping? What's the difference? ... and why do we do it?
- Digital signal processing
- Digital filters

semi-gaussian, moving window deconvolution

- Hardware
- To DSP or not to DSP?
- Summary
- Further reading



An analogue input signal limited to a bandwidth f_{BW} can be reproduced from its samples with no loss of information if it is regularly sampled at a frequency

$$f_s \ge 2f_{BW}$$

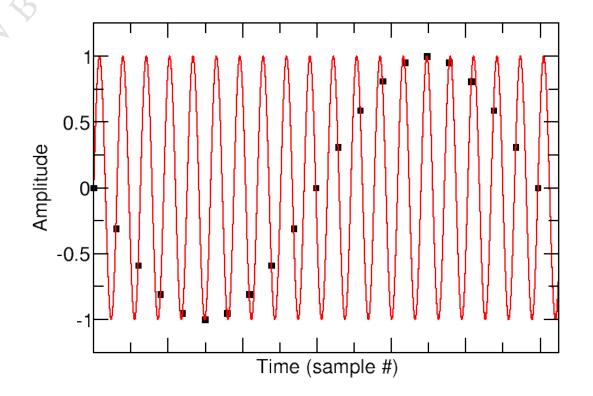
The sampling frequency $f_s = 2f_{BW}$ is called the Nyquist frequency (rate)

Note: in practice the sampling frequency is usually >5x the signal bandwidth

Aliasing: the problem

Continuous, sinusoidal signal frequency *f* sampled at frequency f_s ($f_s < f$)

F



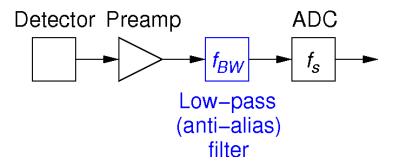
Aliasing misrepresents the frequency as a *lower* frequency $f < 0.5f_s$

Aliasing: the solution

Use low-pass filter to restrict bandwidth of input signal to satisfy Nyquist criterion

 $f_s \ge 2f_{BW}$

ED1



Digital Signal Processing

Detector Preamp Anti-alias ADC

Digital signal processing is the software controlled processing of sequential data derived from a digitised analogue signal.

Some of the advantages of digital signal processing are:

functionality

possible to implement functions which are difficult, impractical or impossible to achieve using hardware, e.g. FFT, 'perfect' filters etc.

stability

post-digitisation the data is immune to temperature changes, power supply drifts, interference etc.

noiseless

post-digitisation no additional noise from processing (assuming calculations are performed with sufficient precision)

- linearity
 - ... perfect!

Objectives of Pulse Shaping

Filter – modification of signal bandwidth (frequency domain)

Shaper – modification of signal shape (time domain)

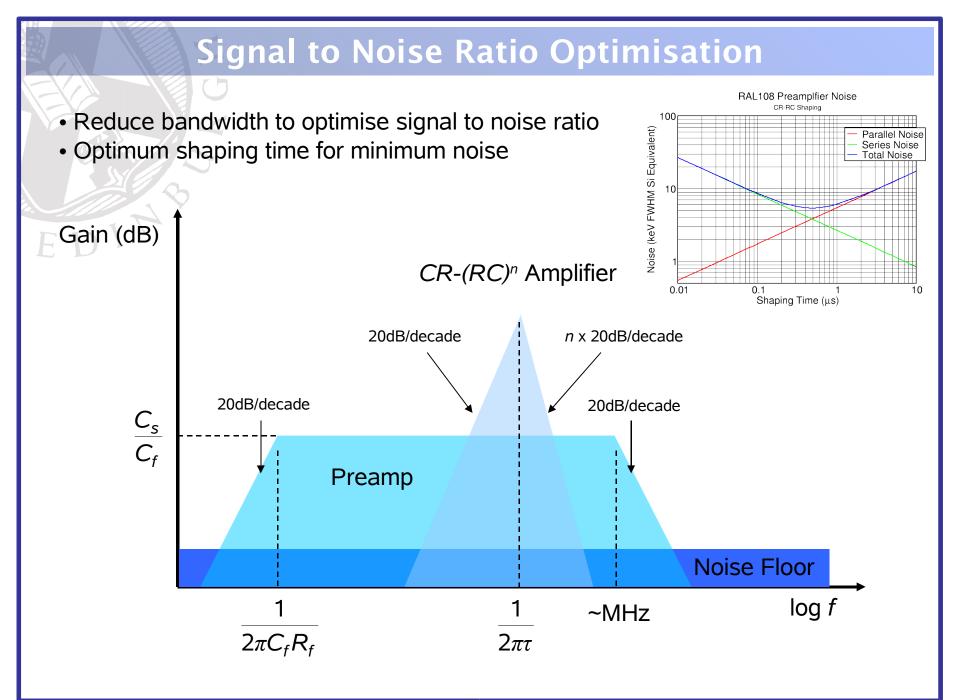
Fourier transform – calculate frequency domain from time domain (and vice versa)

Signal modified in frequency domain \Rightarrow signal shape modified

Filter = Shaper

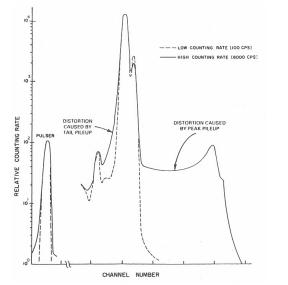
Why use pulse shaping?

- Signal to noise ratio optimisation
- Throughput optimisation
- Ballistic deficit minimisation
- ADC input signal conditioning
- Conflicting requirements compromise solutions

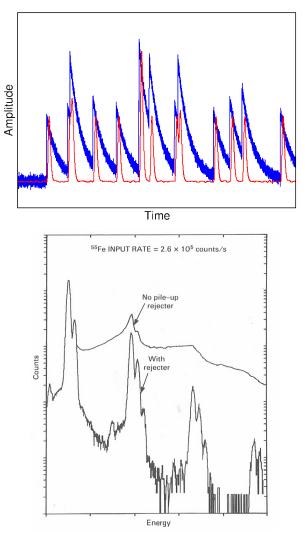


Throughput Optimisation

Minimise pulse width to minimise effects of pileup and maximise throughput – short shaping times required



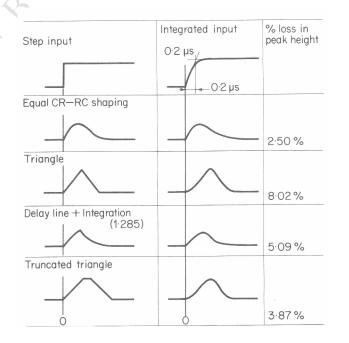
from L.Wielpowski & R.P.Gardner, NIM 133 (1976) 303



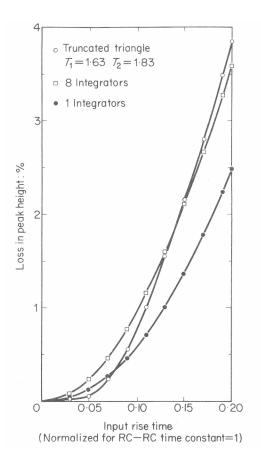
from F.S.Goulding & D.A.Landis, IEEE Trans. Nucl. Sci. 25 (1978) 896

Ballistic Deficit

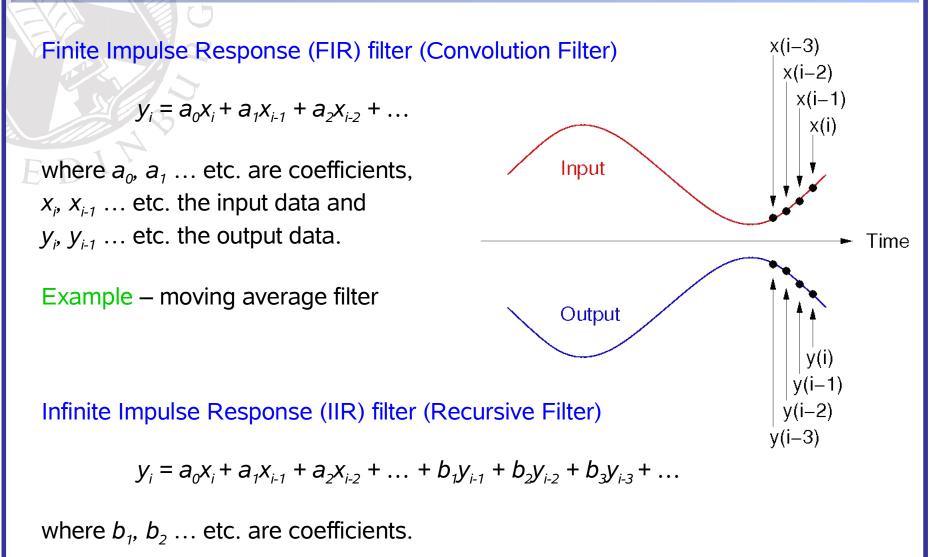
from *Nuclear Electronics*, P.W. Nicholson, Wiley, 1974 K.Hatch, IEEE Trans. Nucl. Sci. NS15 (1968) 303



Require long shaping times compared to input risetime *variations*



Digital Filters



Example – simple first order (single pole) filter

Simple Recursive Filters

Low pass filter (integrator)

High pass filter (differentiator)

$$a_0 = 1 - z$$

$$b_1 = z$$

$$y_i = a_0 x_i + b_1 y_{i-1}$$

where $0 < z \leq 1$

 $a_0 = \frac{1+z}{2}$ $a_1 = -\frac{1+z}{2}$ $b_1 = z$ $y_i = a_0 x_i + a_1 x_{i-1} + b_1 y_{i-1}$

For an analogue *RC* circuit, the time constant *RC* is the time to decay to 36.8% of the initial value: *d* is the number of samples it takes for a digital recursive filter to decay to the same level.

$$z = \exp\left(-\frac{1}{d}\right)$$

DSP Program: Semi-Gaussian Filter

С

С

С

STOP

END

PROGRAM semigauss

С

С

С

- Number of samples = nINTEGER n PARAMETER (n = 1000000)
- Number of poles = n poles INTEGER n poles PARAMETER (n poles = 6)
- С Gain=1/(n poles**n poles *exp(-n poles)/n poles!) REAL gain PARAMETER (gain = 6.22575)
- Time constant = tc samples С REAL tc PARAMETER (tc = 20.0)
- С Pole zero correction = pz samples REAL pz PARAMETER (pz = 500.0)

```
INTEGER i, j
REAL a0, a1, b0
REAL x(0:n-1), y(0:n-1), z(0:n-1)
REAL t(0:n-1)
```

```
С
     Read input data
     DO i = 0, n - 1
      READ(5, *) t(i), x(i)
     ENDDO
```

Single pole high pass filter with pole-zero correction b1 = EXP(-1.0 / tc)a0 = (1.0 + b1) / 2.0a1 = -(1.0 + b1) / 2.0DO i = 1, n - 1y(i) = b1 * y(i - 1) + a0 * x(i)+ + a1 * x(i - 1) + x(i - 1) / pz ENDDO

```
n-pole low pass filter
b1 = EXP(-1.0 / tc)
a0 = 1.0 - b1
```

```
DO j = 1, n poles
DO i = 1, n - 1
 z(i) = b1 * z(i - 1) + a0 * y(i)
ENDDO
DO i = 1, n - 1
 y(i) = z(i)
ENDDO
ENDDO
```

```
Write semi-gaussian filter output
DO i = 1, n - 1
WRITE( 6, * ) t( i ), gain * z( i )
ENDDO
```

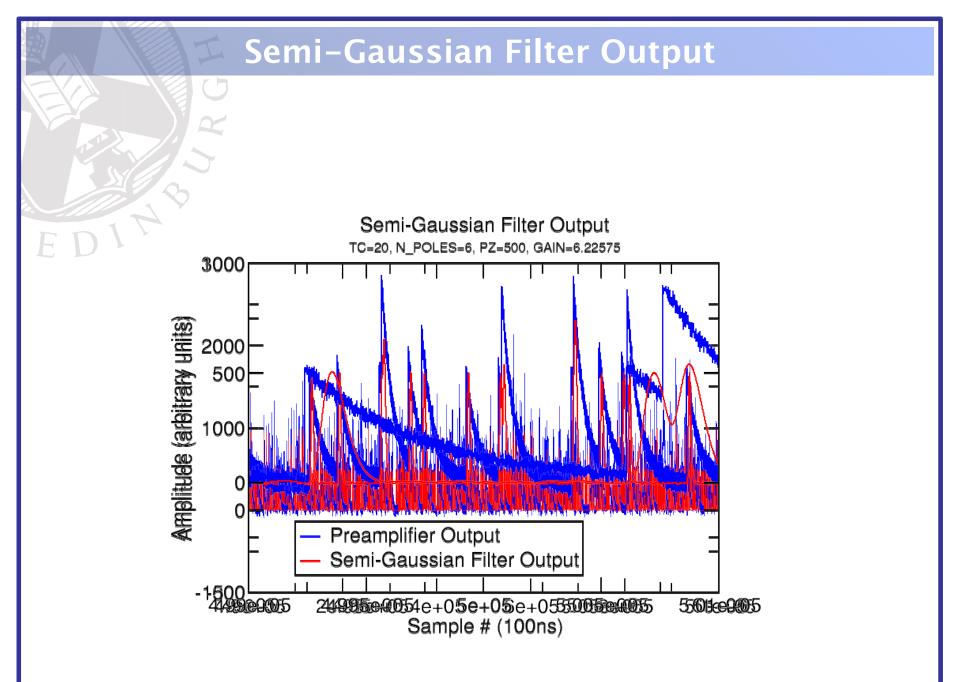
FORTRAN77 source code

Input Data

Assuming we sample at 10MHz (100ns per sample)

Sample history 0.1s
 Mean event rate 10kHz

The same input dataset will be used for all of the examples



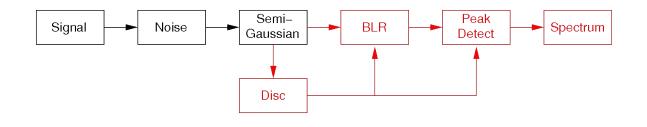
Semi-Gaussian Filter contd.

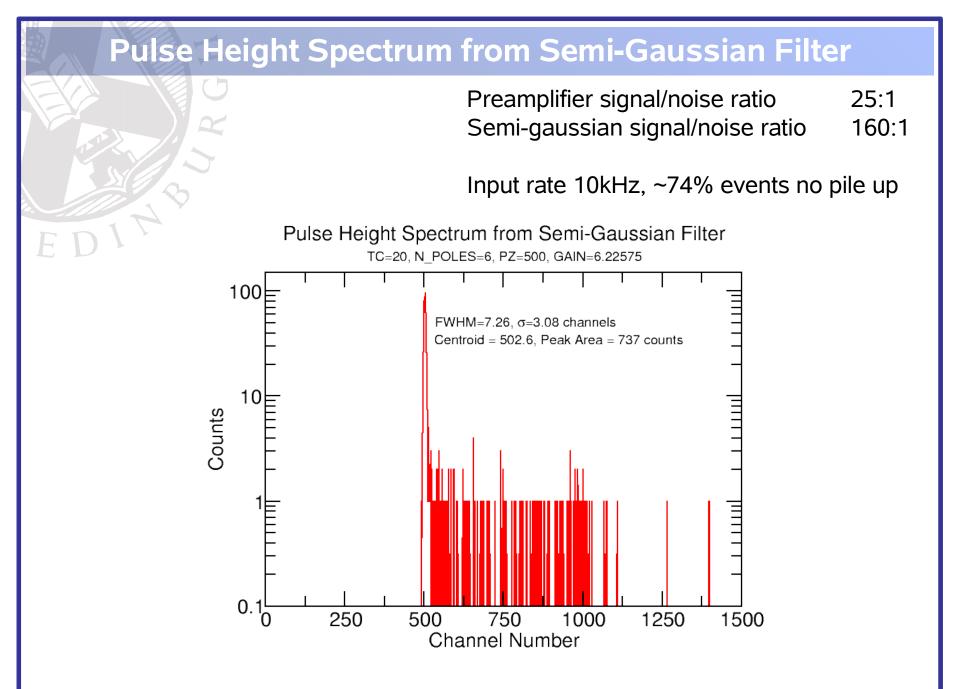
In practice, the semi-gaussian filter algorithm described would be elaborated to include one, or more, of the following:

- Constant fraction (or other) discrimination
- Pile-up rejection (PUR)
- Baseline restoration (BLR)
- Ballistic deficit correction
- Peak detection
- Pulse shape analysis (PSA)
- Integral and differential non-linearity correction (INL/DNL)

Example

Add simple discriminator and implement baseline restorer and peak detect algorithms to generate pulse height spectra





Moving Window Deconvolution (MWD)

MWD filter commonly used for X-ray and γ -ray detectors

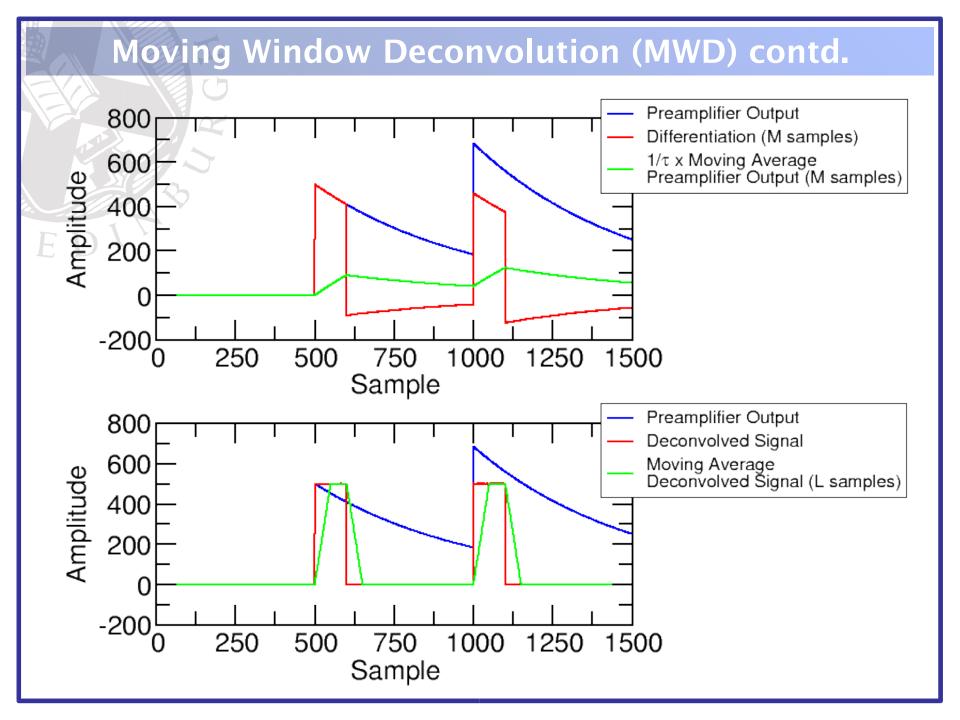
For a preamplifier with decay time $\boldsymbol{\tau}$

Deconvolved Signal Differentiation Moving Average $MWD_M(i) \neq x(i) - x(i - M)$ $\begin{pmatrix} 1 & i - 1 \\ - & \sum \\ y = i - M \end{pmatrix}$ $T_M^L(i) \neq \begin{pmatrix} 1 & j - 1 \\ - & \sum \\ y = i - M \end{pmatrix}$ $T_M^L(i) \neq \begin{pmatrix} 1 & j - 1 \\ - & \sum \\ y = i - M \end{pmatrix}$ Moving Average (low pass filter)

Trapezoidal shaping: Triangular shaping:

F

L<*M*, length of flat top *M*-*L L*=*M*



DSP Program: MWD

С

С

С

PROGRAM mwd

```
С
      Number of samples = n
      INTEGER n
      PARAMETER (n = 100000)
С
      Deconvolution window = m samples
      INTEGER m
      PARAMETER (m = 100)
C
      Moving average window = 1 samples
      INTEGER 1
      PARAMETER (1 = 50)
      Pole zero correction = pz samples
С
      REAL pz
      PARAMETER (pz = 500.0)
      INTEGER i, j
      REAL d m, ma l(0:n-1)
      REAL ma m, mwd m(0:n-1)
      REAL t(0:n-1), x(0:n-1)
С
      Read input data
      DO i = 0, n - 1
       READ(5, *) t(i), x(i)
      ENDDO
```

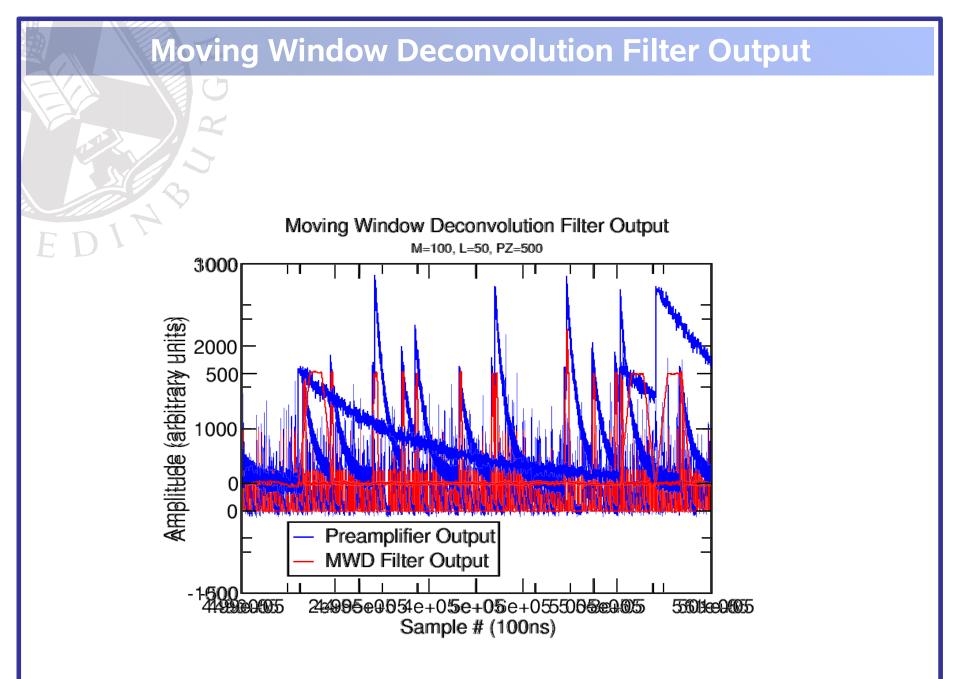
```
Moving window deconvolution
DO i = m, n - 1
d_m = x(i) - x(i - m)
ma_m = 0.0
DO j = i - m, i - 1
ma_m = ma_m + x(j)
ENDDO
mwd_m(i) = d_m + ma_m / pz
ENDDO
```

```
Moving average
DO i = l, n - 1
ma_l(i) = 0.0
DO j = i - l, i - 1
ma_l(i) = ma_l(i) + mwd_m(j)
ENDDO
ma_l(i) = ma_l(i) / l
ENDDO
```

```
Write MWD filter output
DO i = m, n - 1
WRITE( 6, * ) t( i ), ma_l( i )
ENDDO
```

STOP END

FORTRAN77 source code

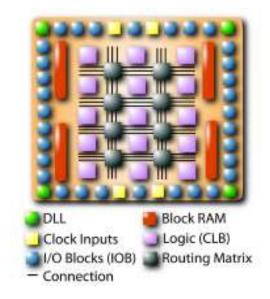


Digital Signal Processor

Specific hardware to implement the software controlled processing of sequential digital data derived from a digitised analogue signal.

• DSP algorithms usually implemented with programmable logic devices e.g. Field Programmable Gate Arrays (FPGAs) from Xilinx, Altera etc.

- FPGA consists of *lots (and lots)* of configurable logic blocks (CLBs) configurable interconnections configurable I/O blocks (IOBs) RAM etc.
- FPGAs are very powerful devices



from M.Lauer, PhD thesis, 2004

Digital Signal Processor contd.

Design by high level abstractions with hardware description languages (HDLs) e.g. VHDL, Verilog

architecture Behavioral of add_signed is

SIGNAL temp: std_logic_vector(width downto 0); SIGNAL ta: std_logic_vector(width downto 0); SIGNAL tb: std_logic_vector(width downto 0);

begin

```
temp <= ta + tb + ("0"&CarryIn);</pre>
```

process(signed, A, B, CarryIn)
begin

```
-- signed input
case signed is
```

when '1' => ta(width-1 downto 0) <=

VHDL code extract – signed 16-bit adder *courtesy* Ian Lazarus, CCLRC DL

> A; ta(width) <= A(width-1); tb(width-1 downto 0) <=B; tb(width) <= B(width-1);

```
-- unsigned input
    when others => ta(width-1 downto 0) <= A;
    ta(width) <= '0';
    tb(width-1 downto 0) <=B;
    tb(width) <= '0';</pre>
```

end case;

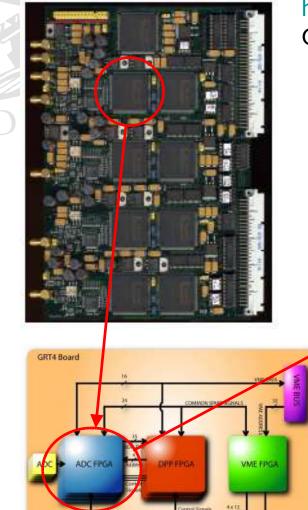
```
end process;
```

HDL code is used to

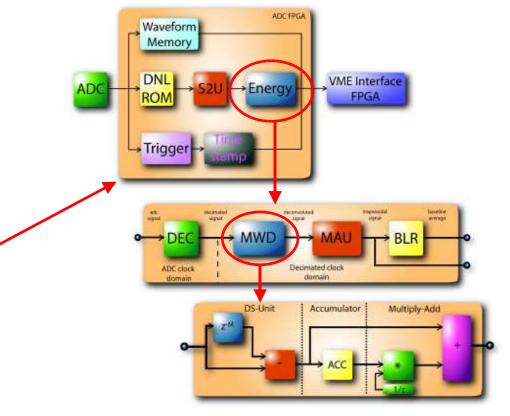
simulate, optimise and synthesise design generate data required to configure FPGA

- Result customised, high performance computer
- Near real-time performance

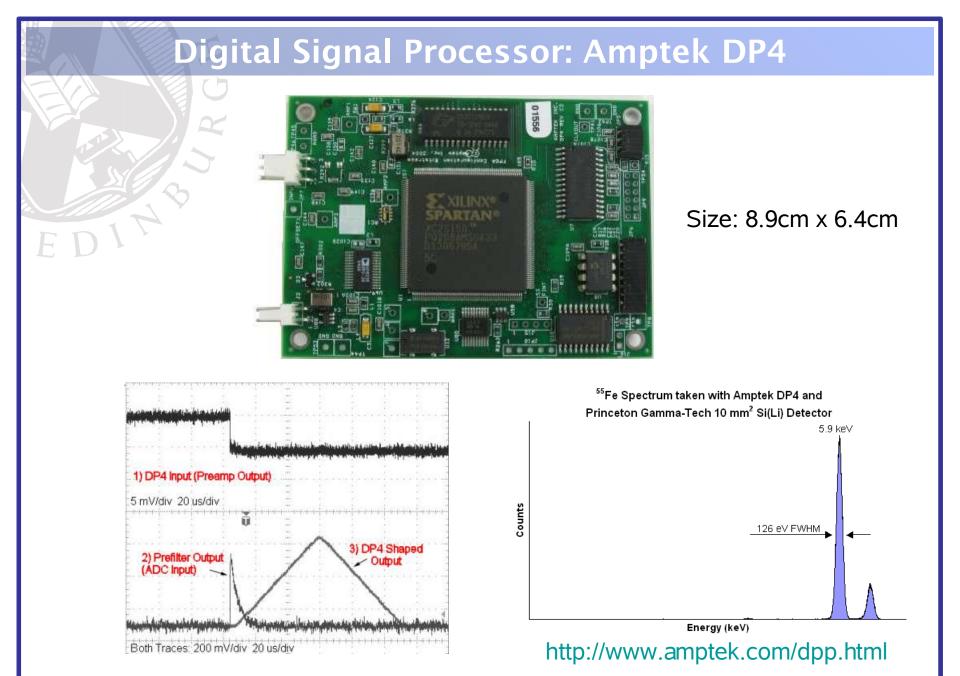
Digital Signal Processor: GRT4



http://npg.dl.ac.uk/GRT GRT4 4x 80MHz 14-bit ADCs, 6U VME card



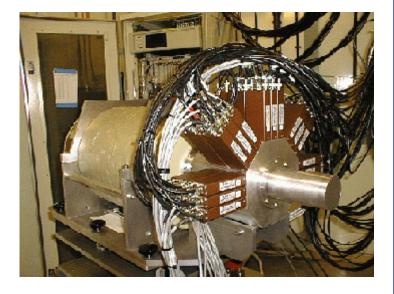
from M.Lauer, PhD thesis, University of Heidelberg, 2004

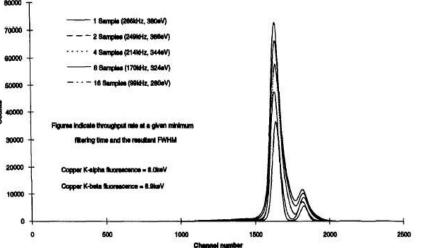


Digital Signal Processor: XSPRESS

- Classic DSP application
- EG&G Ortec 30 x 30mm² HPGe EXAFS array
- CCLRC DL VME-based DSP instrumentation
- *Adaptive* digital signal processing algorithm filter bandwidth varied depending on time available to next event
- Throughput c. 400kHz/channel at 5% resolution (400eV FWHM Cu K_α)

R.Farrow et al., NIM B97 (1995) 567





Digital Signal Processor: other examples

XIA DGF4

Miniball @ REX-ISOLDE see Thorsten Kroll's lectures

DSSSDs + ... @ HRIBF/ORNL M.Karny *et al.* Phys. Rev. Lett. 90 (2003) 012502 http://fribusers.org/4_GATHERINGS/2_SCHOOLS/2010/talks/Grzywacz_1.pdf

CAEN V17xx Modules

see T.Marchi's presentation

AGATA

see E.Farnea's presentation F.Recchia et al., NIM A 604 (2009) 555

The New World

Multichannel 100MSPS, 14-bit ADC modules

GRETINA + ... GAMMASPHERE refit FMA 160x160 DSSSD

http://grfs1.lbl.gov/

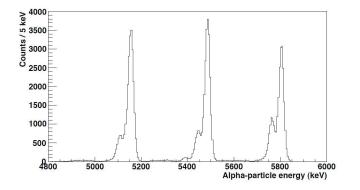
being upgraded

TIGRESS/SHARC

J.P.Martin et al., IEEE NS55 (2008) 84

TIGRESS VXI racks

32-fold segmented HPGe detectors SHARC DSSSDs



C.A.Diget et al., J. Inst. 6 (2011) P02005

To DSP or not to DSP?

Use DSP for ...

resolution & throughput optimisation variable detector pulse shapes

Use analogue signal processing for ...

fast shaping systems not sensitive to, or with fixed, detector pulse shapes high density (low area, low power) applications

Expect ...

ADCs with higher precision, speed & density lower power & cost

more powerful FPGAs an expanding range of applications

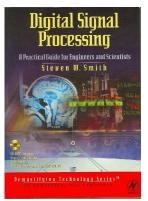
Summary

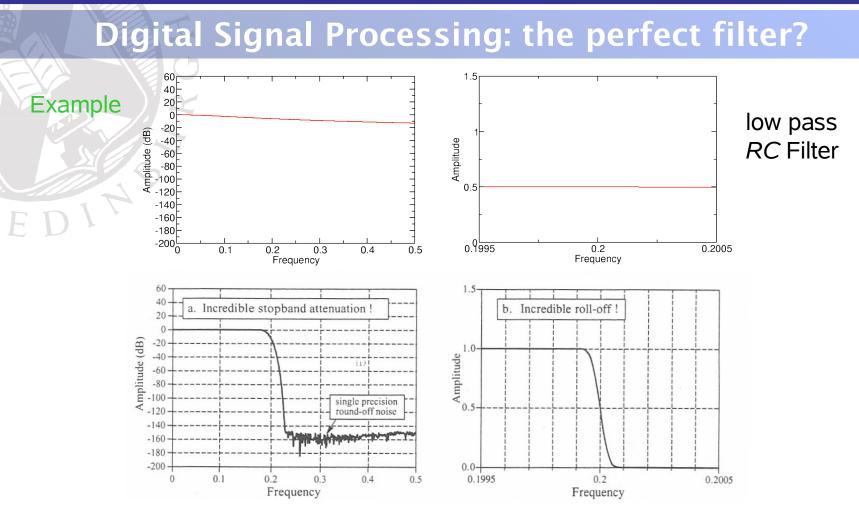
- DSP concepts are straightforward
 - you don't need to be a rocket scientist to understand them
- Real world DSP implementations use FPGAs
 - this is rocket science
 - highly abstracted hardware design description
 - optimised generic design building blocks available
 - development, test and optimisation tools available
 - real time performance
- Other nuclear physics applications
 spectrum analysis
- Wider applications
 - sound/image/video
 - neural networks
 - data compression
 - FFT
 - etc.

Further Reading

Digital Signal Processing: A Practical Guide for Engineers and Scientists, Steven W.Smith, Newnes, 2003 http://www.dspguide.com

F





from Smith, Digital Signal Processing

- 32,001 point windowed-sinc filter configured as a low pass filter
- Stopband attenuation >120dB (1 part in a million)
- Roll off 0.0125% of sample rate
- 1kHz low pass filter gain 1+/-0.002 d.c. to 1000Hz gain <0.0002 above 1001Hz

Moving Average Filter

- Commonly used digital filter
 - easy to use and understand
- *Optimum* filter for reducing random noise *and* minimising degradation of step response
- Good signal smoother (time domain)
- Poor filter (frequency domain)
- Noise reduction $\propto \sqrt{m}$

$$y(i) = \frac{1}{m} \sum_{j=0}^{m-1} x(i+j)$$

where *x* is the input signal, *y* the output signal and *m* is the number of points (samples) in the average.

Alternatively, symmetrically about the output point

$$y(i) = \frac{1}{m} \sum_{j=-(m-1)/2}^{(m-1)/2} x(i+j)$$
 modd

• No relative shift between input and output

DSP Program: Moving Average Filter

C C

С

C C

С

С

PROGRAM ma

С

C

C

Number of samples = n INTEGER n PARAMETER (n = 1000000)

Moving average sample length = m samples (m is an odd number) INTEGER m PARAMETER (m=21)

```
INTEGER i, j
REAL t(0:n-1), x(0:n-1), y(0:n-1)
```

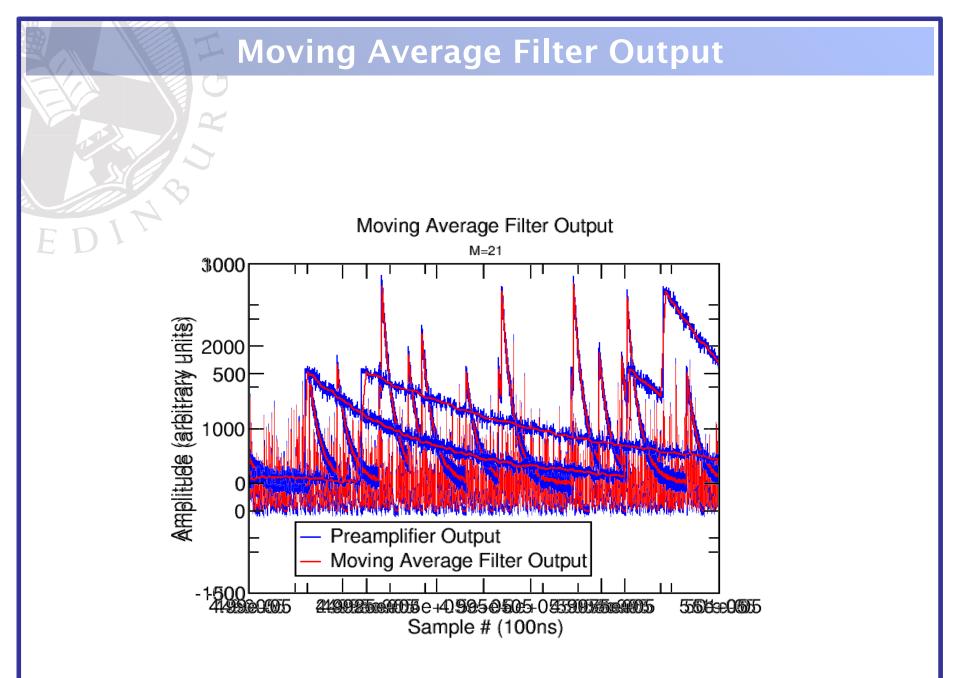
```
C Read input data
DO i = 0, n - 1
READ( 5, * ) t( i ), x( i )
ENDDO
```

```
Calculate moving average
Loop for each data point
Zero output data point
Loop m times for sum
Calculate m-point average
DO i = ( m - 1 ) / 2, n - ( m - 1 ) / 2
y( i ) = 0.0
DO j = - ( m - 1 ) / 2, ( m - 1 ) / 2
y( i ) = y( i ) + x( i + j )
ENDDO
y( i ) = y( i ) / m
ENDDO
```

```
Write moving average filter output
DO i = ( m - 1 ) / 2, n - ( m - 1 ) / 2
WRITE( 6, * ) t( i ), y( i )
ENDDO
```

STOP END

FORTRAN77 source code



Moving Average Filter

Implementation by Recursion

Consider two adjacent output points produced by a 5-point moving average filter, for example,

$$y(50) = x(48) + x(49) + x(50) + x(51) + x(52)$$
$$y(51) = x(49) + x(50) + x(51) + x(52) + x(53)$$

or,

$$y(51) = y(50) + x(53) - x(48)$$

More generally,

$$y(i) = y(i-1) + x(i+p) - x(i-q)$$
 $p = \frac{m-1}{2}, q = p+1$

Note that only two calculations per output data point are required independent of the number of points *m* in the moving average.