Rare B decays $B \rightarrow \eta' K^* \& B \rightarrow \eta' \rho$

Paul Bloom*, Phil Clark, Wolfgang Gradl and Alan Robertson

http://www.ph.ed.ac.uk/~pclark

*Swarthmore College

University of Edinburgh

Overview

- Contents of talk
 - Introduction to charmless two body decays
 - Theoretical predictions and previous results
 - Status of BaBar and PEPII
 - Analysis details (selection, fit, backgrounds)
 - Results and systematics
 - Conclusion
- Chosen to focus on one particular analysis
- The search for four modes (charged and neutral) $B \rightarrow \eta' K^*$ and $B \rightarrow \eta' \rho$
- Territory of "rare" B decays being explored rapidly...

Charmless B Branching Fractions

Quasi Two Body Decays

J^{PC} classification of light meson decays

L	S	J^{PC}	mesons	nickname
0	0	0 ⁻⁺	$\pi^{0}, \pi^{\pm}, \eta, K^{\pm}, K^{0}_{S}, K^{0}_{L}, \eta',$ etc.	pseudoscalars
0	1	1	$\rho^{0}, \rho^{\pm}, \omega, \phi, K^{*\pm}, K^{*0}, \overline{K^{*0}},$ etc.	vectors
1	0	1+-	$h_1^0(1170), b_1^{0\pm}(1235),$ etc.	axial vectors
1	1	0++	$f_0^0(980), a_0^{0\pm}(980),$ etc.	scalars
1	1	2 ⁺⁺	$f_2^0(1270), a_2^{0\pm}(1320),$ etc.	tensors

• $B \rightarrow \eta' K^*$ and $B \rightarrow \eta' \rho$ are PV decays

SU(4) multiplets

Meson pseudoscalar and vector 16-plets

based on central su(3) *nonets* (excluding η_c and J/ψ)

shown also are the baryon 20-plets (su(3) octet and decuplet based)

The $\eta \& \eta'$ quark content

SU(3) nonet consists of singlet and octet states $(3 \otimes \overline{3} = 8 \oplus 1)$

$$\eta_1 = \frac{1}{\sqrt{3}}(u\bar{u} + d\bar{d} + s\bar{s})$$
$$\eta_8 = \frac{1}{\sqrt{6}}(u\bar{u} + d\bar{d} - 2s\bar{s})$$

Physical η and η' states are octet-singlet mixed states:

$$\eta = \eta_1 \sin \theta - \eta_8 \cos \theta$$
$$\eta' = \eta_1 \cos \theta + \eta_8 \sin \theta$$

Assuming a mixing angle $\theta = 20^{\circ}$ (vector mesons $\theta = 35^{\circ}$)

$$\eta = \frac{1}{\sqrt{3}}(u\bar{u} + d\bar{d} - s\bar{s})$$
$$\eta' = \frac{1}{\sqrt{6}}(u\bar{u} + d\bar{d} + 2s\bar{s})$$

Theoretical Approaches (1)

Diagrammatic methods

- Methodology
 - Isospin & SU(3)
- Advantages
 - very intuitive
 - powerful relations
- Disadvantages
 - SU(3) breaking
 - a priori information
 - non exact results

(a) T_p (b) C_v (c) P_v (d) P_p

Theoretical Approaches (2) Effective Hamiltonian

- Methodology
 - QCD operator product expansion
 - Wilson coeffs × operators
- Advantages
 - Better handling of QCD corrections
- Disadvantages
 - Huge uncertainties in operator matrix elements
 - One approach is QCD factorisation

Other approaches: Soft Collinear Effective Theory & perturbative QCD factorization

• Current-current operators:

 $\begin{aligned} Q_1^{\alpha\beta k} &\equiv (\bar{b}_x \alpha_y)_{V-A} (\bar{\beta}_y k_x)_{V-A}, \\ Q_2^{\alpha\beta k} &\equiv (\bar{b}\alpha)_{V-A} (\bar{\beta}k)_{V-A}; \end{aligned}$

• Gluonic-penguin operators:

$$\begin{split} Q_3^k &\equiv (\bar{b}k)_{V-A} \sum_q (\bar{q}q)_{V-A}, \\ Q_4^k &\equiv (\bar{b}_x k_y)_{V-A} \sum_q (\bar{q}_y q_x)_{V-A}, \\ Q_5^k &\equiv (\bar{b}k)_{V-A} \sum_q (\bar{q}q)_{V+A}, \\ Q_6^k &\equiv (\bar{b}_x k_y)_{V-A} \sum_q (\bar{q}_y q_x)_{V+A}; \end{split}$$

$B \to \eta' K^*$ diagrams

- One loop $b \rightarrow s$ penguins expected to dominate
- скм and colour suppressed internal trees
- скм suppressed external
 tree for $B^+ \to \eta' K^{*+}$
- $B^0 \rightarrow \eta' K^{*0}$ diagrams identical to $\eta' K^0$
- Variety of possible singlet and rescattering diagrams

 $\eta - \eta'$ puzzle

- The decays $\eta' K$ and $B \to \eta K^*$ are large
 - $\mathcal{B}(B^0 \to \eta' K^0) = 63.2 \pm 3.3$

•
$$\mathcal{B}(B^+ \to \eta' K^+) = 69.4 \pm 2.7$$

•
$$\mathcal{B}(B^0 \to \eta K^{*0}) = 18.7 \pm 1.7$$

•
$$\mathcal{B}(B^+ \to \eta K^{*+}) = 24.3^{+3.0}_{-2.9}$$

• but why are $B \rightarrow \eta K$ and $\eta' K^*$ small?

•
$$\mathcal{B}(B^0 \to \eta K^0) < 1.9$$

•
$$\mathcal{B}(B^+ \to \eta K^+) = 2.5 \pm 0.3$$

•
$$\mathcal{B}(B^0 \to \eta' K^{*0}) < 7.6$$

•
$$\mathcal{B}(B^+ \to \eta' K^{*+}) < 14$$

- Various theory explanations
 - sum rule put forward by Lipkin
 - η' charm content

HFAG July 2005

Philip J. Clark, University of Edinburgh – p. 11/46

$B \to \eta' ho$ diagrams

- скм and colour suppressed internal trees
- One loop $b \rightarrow d$ penguins
- скм suppressed external tree for $\eta' \rho^+$
- $\eta' \rho^0$ expected to be small
 - Internal trees cancel

Motivation

Decay mode	Theoretical predictions		Experimental status			
	SU(3) flavor	QCD fact.	HFAG(7/05)	BaBar	Belle	
$B^0 \to \eta' K^{*0}$	$3.0^{+1.2}_{-0.3}$	$3.9^{+9.24}_{-5.07}$	< 7.6	< 7.6	< 20	
$B^+ \to \eta' K^{*+}$	$2.8^{+1.2}_{-0.3}$	$5.1^{+10.31}_{-\ 5.94}$	< 14	< 14	< 90	
$B^0 \to \eta' \rho^0$	$0.07\substack{+0.10 \\ -0.05}$	$0.01\substack{+0.12 \\ -0.06}$	< 4.3	< 4.3	< 14	
$B^+ \to \eta' \rho^+$	$4.9^{+0.7}_{-0.7}$	$6.3^{+4.0}_{-3.3}$	< 22	< 22		

- Use increased dataset (run1-4) to tighten upper limits
- Try to constrain theory predictions
- Might get lucky (c.f. run1-2 yields) $\mathcal{S}(\eta' K^{*0}) = 2.1\sigma \qquad \mathcal{S}(\eta' K^{*+}) = 1.9\sigma \qquad \mathcal{S}(\eta' \rho^{+}) = 2.6\sigma$
- Magnitude of $\eta' K^*$ suppression vs. $\eta' K$ enhancement

PEPII at SLAC

- Asymmetric collisions:
 - 9.1 GeV e^- / 3.1 GeV e^+
- Construction
 - started in 1994
 - completed in 1999
- Design luminosity in 2000

 $e^+e^- \to \Upsilon(4S) \to B\bar{B}$

Integrated luminosity

- Long downtime (electrical accident) 2004
- Luminosity problems so far in 2006

Luminosity trends

- Excellent performance of the B factories
- Design luminosity
 - KEKB $1 \times 10^{34} \,\mathrm{cm}^{-2} \mathrm{s}^{-1}$
 - **PEPII** $3 \times 10^{33} \,\mathrm{cm}^{-2} \mathrm{s}^{-1}$
- Instantaneous luminosity frontier

The BaBar detector

Datasets

- The data sample for this analysis is 210 fb⁻¹ at $\Upsilon(4S)$
 - corresponding to (231.8 ± 2.6) million $B\overline{B}$ pairs.
- Monte Carlo samples typically 120k events per mode
- For B background studies we use 670 million generic $B\overline{B}$ events.
- Previous analysis data sample was 82 fb⁻¹
 - Published: Phys. Rev. D70, 032006 (2004)
 - Contains good description of analysis techniques

BaBar kinematics

- Energy substituted mass: $m_{\rm ES} = \sqrt{(s/2 + \mathbf{p}_0 \cdot \mathbf{p}_B)^2/E_0^2}$
- Energy difference: $\Delta E = E_B^* - \sqrt{s/2}$
- GTL = "Good Tracks Loose" doesn't include short tracks
- GTVL = "Good Tracks Very Loose" includes short tracks

Helicity of the vector meson (ρ or K^*)

- - B^0 spin 0 decaying to spin 0 + spin 1 final state
 - Vector meson can only take on one spin polarisation
- Define helicity
 - ${}_{\bullet}$ $\cos\theta_{H}$ (cosine of angle between daughter π and negative B direction in vector meson frame)
 - signal has $\cos^2 \theta$ shape

Some analysis Improvements

9 GTL \rightarrow GTVL for ρ and K^* meson daughter pions

- Mass constrain η and η' for B candidates
- **9** (5.2 \rightarrow 5.25) $< m_{\rm ES} <$ 5.29

Skim selection

- Inclusive skim (for case $\eta' \rightarrow \eta \pi \pi$) ■ 1.9 GeV/c < $p^* < 3.1 \,\text{GeV/c}$
- Exclusive skim (for case $\eta' \rightarrow \rho \gamma$)
 - Necessary due to larger backgrounds
 - Look for 16 $B \rightarrow \eta' X$ decays
 - $1.9 \,\text{GeV}/c < p^* < 3.1 \,\text{GeV}/c$
 - $m_B > 5.15 \, \text{GeV}/c^2$
 - $|\Delta E| < 0.3 \,\mathrm{GeV}$
 - $E_{\gamma} > 0.050 \, \text{GeV}$

Final state	Signal efficiency (%)	$qar{q}$ efficiency (%)
$\eta' K^*$	40	3.8
$\eta' ho^0 / ho^+$	58/36	< 4.5

Event selection

ten decay modes

- $\eta'_{\eta\pi\pi}K^{*+}_{K^0\pi^+}$, $\eta'_{\rho\gamma}K^{*+}_{K^+\pi^0}$
- $\eta'_{\eta\pi\pi}
 ho^0$, $\eta'_{
 ho\gamma}
 ho^0$
- $\eta'_{\eta\pi\pi}\rho^+, \eta'_{\rho\gamma}\rho^+$
- K_{s}^{0} candidate lifetime $\tau/\sigma_{t} > 3$
- Particle identifi cation
 - e/p/K veto for pions
 - tight ID for kaons

Criterion	Requirement
$\eta_{\gamma\gamma}$	$490 < m(\gamma\gamma) < 600$
$\eta'_{\eta\pi\pi}$	$910 < m(\eta \pi \pi) < 1000$
$\eta'_{ ho\gamma}$	$910 < m(\rho\gamma) < 1000$
$K^*_{K\pi}$	$755 < m(K\pi) < 1035$
$ ho^+$	$470 < m(\pi\pi) < 1070$
$ ho^0$	$510 < m(\pi\pi) < 1060$
π^0	$120 < m(\gamma\gamma) < 150$
K^0_S	$486 < m(\pi\pi) < 510$
γ (from η)	$E_{\gamma} < 100$
γ (from π^0)	$E_{\gamma} < 30$
γ (from η')	$E_{\gamma} < 200$
$N_{ m trks}$	$\geq \max[3, N_{\text{trks in decay mode}} + 1]$
Fisher, ${\cal F}$	$-4 < \mathcal{F} < 5$
$m_{ m ES}$	$5.25 \le m_{\rm ES} < 5.29 \ {\rm GeV}/c^2$

$q\overline{q}$ background rejection (1)

- Rare charmless decays
 - small signal / large background
 - two body kinematics help remove background
- Dominant remaining background is $q\overline{q}$ continuum
- Reject jet-like topologies
- Define "thrust" axis and cut on angle
 - $|\cos \theta_{\rm T}| < 0.9 \ \eta'_{\eta\pi\pi}$ modes
 - $|\cos \theta_{\rm T}| < 0.75 \ \eta'_{\rho\gamma}$ modes

$q\overline{q}$ background rejection (2)

- Many other "event shape" variables, all highly correlated
- Distinguish signal from $q\overline{q}$ with Fisher (\mathcal{F}) discriminant
 - $|\cos \theta_B|$, θ_B angle between $\vec{p_B}$ and beam axis
 - $|\cos \theta_C|$, θ_C angle between candidate thrust axis and beam
 - Legendre Polynomials P_0 and P_2 , angular distribution of "rest of event" momentum flow wrt. *B* thrust axis
- Linear weights are applied to each variable to maximise S to B separation.

$B\overline{B}$ backgrounds

- Mainly backgrounds picking up extra particle (eg. $B \rightarrow \eta' K$)
- ΔE and helicity cuts help

● $-0.200 < \Delta E < 0.125$ ($-0.200 < \Delta E < 0.150$ modes with $π^0$)

- $\cos \theta_H > -0.95$ removes slow π^+ combs
- **Solution** For π^0 modes we remove slow π^+ or slow π^0 combs
- Identify remaining $B\overline{B}$ using generic MC then dedicated signal MC (added $a_1
 ho/K^*$)

 $\eta'_{\eta\pi\pi}$ modes have less $B\overline{B}$ background than $\eta'_{\rho\gamma}$ (have not unblinded $\eta'_{\rho\gamma}\rho$)

Signal mode ($B^0 \rightarrow \eta' K^{*0}$)	Mode #	MC ϵ	Est. B	$\prod \mathcal{B}_i$	Norm. #	# in PDF
Bkg. channel		(%)	(10^{-6})		$B\overline{B}$ B kg.	Bkg. fi le
$B^+ \to \eta'_{\eta_{\gamma\gamma}\pi\pi} K^+$	1506	0.46	69	0.174	12.8	658
$B^0 \to \eta_{3\pi} K^{*0}_{K^+\pi^-}$	1540	0.7	19	0.151	4.7	240
$B^0 \to \eta'_{\eta_{\gamma\gamma}\pi\pi} K_S$	1510	0.32	63	0.060	2.8	146
$B^0 \to a_1^0 K^{*0}(L, f_L = 0.7)$	5329	0.03	21	0.467	0.7	38
$B^0 \to \omega \; K_{K^+\pi^-}^{*0}(L, f_L = 1)$	2507	0.11	4	0.594	0.6	31
$B^+ \to a_1^+ (\rho^+ \pi^0) K^{*0} (L, f_L = 0.7)$	5331	0.02	42	0.233	0.4	21

Some modes have large $B\overline{B}$ backgrounds

٩	$\eta'_{o\gamma}$ modes have 20-30 $B\overline{B}$ bkgs	Signal mod Bkg. char
	· p	η'_{a}, ρ^+

- \checkmark All modes: $\sim 300~{\rm bkgs}$
- Dropped $\eta'_{\rho\gamma}\rho^+$ and $\eta'_{\rho\gamma}\rho^0$
 - Statistical power small
 - Systematics huge

Signal mode	$\operatorname{Mode} \#$	MC ϵ	Est. ${\cal B}$	$\prod \mathcal{B}_i$	Norm. #	# in PDF
Bkg. channel		(%)	(10^{-6})		$B\overline{B}$ Bkg.	Bkg. file
$\eta'_{\rho\gamma}\rho^+$						
$B^+ \rightarrow a_1^0 \rho^+ (L, f_L = 1)$	3999	0.94	48	1.000	105	1509
$B^0 \to a_1^+(\rho^0 \pi^+) \rho^-(L, f_L = 1)$	4002	0.7	84	0.500	68.5	984
$B^0 \rightarrow \rho^+ \rho^- (L, f_L = 1)$	2498	0.9	26	1.000	54.2	778
$B^+ \rightarrow \rho^+ \rho^0(L, f_L = 1)$	2390	0.75	26	1.000	45.1	648
$B^+ \to a_1^+(\rho^+\pi^0)\rho^0(L, f_L = 1)$	4107	0.69	48	0.500	38.3	550
$B^+ \rightarrow a_1^+ \pi^0$	3584	0.27	15	1.000	9.4	135
$B^+ \rightarrow a_1^+ (\rho^0 \pi^+) \pi^0$	4799	0.42	15	0.500	7.2	103
$B^+ \rightarrow \omega \rho^+ (L, f_L = 0.88)$	2768	0.25	12	0.891	6.1	88
$B^0 \rightarrow \pi^- a_1^+$	4157	0.07	33	1.000	5.5	79
$B^0 \rightarrow \rho^- \pi^+ \pi^0$	2491	0.22	10	1.000	5	72
$B^+ \rightarrow a_1^+ (\rho^+ \pi^0) \pi^0$	4957	0.26	15	0.500	4.5	64
$B^+ \rightarrow \rho^0 \pi^+ \pi^0$	2484	0.18	10	1.000	4.2	60
$B^+ \rightarrow a_1^+ (\rho^0 \pi^+) a_1^0 (L, f_T = 1)$	6650	0.14	49	0.250	4.1	58
$B^+ \rightarrow a_1^+ (\rho^0 \pi^+) \rho^0 (L, f_I = 1)$	4105	0.07	48	0.500	4	57
$B^+ \rightarrow a_0^0 \pi^+$	4156	0.13	12	1.000	3.7	52
$B^0 \rightarrow a_0^- (p_{\tau\tau} \pi^-) a^+$	2458	0.4	10	0.394	3.6	52
$B^+ \rightarrow \rho^+ \pi^0$	1940	0.13	12	1.000	3.6	51
$B^0 \rightarrow \eta' K_c$	1511	0.23	63	0.101	3.3	47
$B^0 \rightarrow a^0 a^0 (L, f_T = 1)$	4518	0.66	2	1.000	3	43
$B^+ \rightarrow a^+ \pi^+ \pi^-$	2489	0.12	10	1.000	28	40
$B^0 \rightarrow a^0 K^{*0}(L, f_T = 0.7)$	5329	0.12	21	0.467	2.6	37
$B^+ \rightarrow a^+ K^{*0}$ (L fr = 0.7)	2244	0.23	7	0.667	2.5	36
$B^+ \rightarrow a^+ (a^+ \pi^0) K^{*0} (L, f_L = 0.7)$	5331	0.11	42	0.233	2.5	35
$B^{0} \rightarrow a^{-}K^{*+} (T \ f_{T} = 0.25)$	2500	0.36	 0	0.333	2.5	35
$B^{0} \rightarrow \rho^{-} K^{++} (T, f_{z} = 0.25)$	2500	0.43	0	0.000	2.0	20
$B = p \cdot R_{K_S \pi^+}(r, j_L = 0.25)$ $B^+ = p \cdot p \cdot r_{K_S \pi^+}(r, j_L = 0.25)$	5997	0.11		0.220	1.7	20
$B^{0} \rightarrow a_{1}K^{-}(K^{+}\pi^{-})(L, JL = 1)$ $B^{0} \rightarrow a^{+}(a^{0}\pi^{+})a^{-}(a^{0}\pi^{-})(L, f_{2} = 1)$	6620	0.11	21 64	0.333	1.4	24
$B \rightarrow a_1(p \land a_1(p \land a_1(p \land a_1(L, J_L = 1)))$	1029	0.04	10	1.000	1.4	10
$D \rightarrow \pi \pi \pi \pi$ $D^+ \rightarrow F F^{*0} / T = 0.7$	1990	0.00	10	0.007	1.0	10
$B^+ \rightarrow p^+ K_{K^+\pi^-}(I, J_L = 0.1)$	2243	0.29	о 1	0.007	1.0	19
$D^{0} \rightarrow \omega \rho \cdot (I, JL = 0.88)$	2700	0.07	1	0.691	1.2	17
$B^{+} \rightarrow a_{1} \left(\rho \ \pi^{-} \right) K^{-} \left(K \cdot \pi^{-} \right) \left(L, f_{L} = 1 \right)$	0020 5000	0.07	42	0.107	1.2	17
$\mathbf{B}^{0} \rightarrow a_{1}^{*}(\rho, \pi^{*}) K^{**}(I, f_{L} = 0.7)$	5332	0.12	42	0.100	1.1	10
$B^{*} \rightarrow a_{1} \left(\rho^{\circ} \pi^{-} \right) K^{*+} \left(K^{+} \pi^{\circ} \right) \left(\left(L, f_{L} = 1 \right) \right)$	5325	0.06	42	0.167	1.1	15
$B' \rightarrow \rho \pi' \pi'$ $D^0 = 0 E^{*0}(\pi) c = 2 \pi^{*0}$	4151	0.08	5	1.000	0.9	13
$B^{*} \rightarrow a_{1}^{*}K^{*0}(T, f_{L} = 0.7)$	5330	0.08	21	0.200	0.8	11
$B^{+} \rightarrow \pi^{0}\pi^{-}\pi^{+}\pi^{+}$	4153	0.06	5	1.000	0.7	10
$B^{\circ} \to \rho^- K_{K_S \pi^+}^{*+}(L, f_L = 0.25)$	2501	0.35	3	0.229	0.6	8
					406.6	5831

Maximum likelihood fit details

$$\mathcal{L} = \frac{e^{-(\sum n_j)}}{N!} \prod_{i=1}^N \mathcal{L}_i \text{, where } \mathcal{L}_i = \sum_{j=1}^m n_j \mathcal{P}_j(\mathbf{x}_i)$$

- **•** Fit components, n_j , for signal, $q\overline{q}$ and $B\overline{B}$
- Solution For $\eta' \rho^0$ we include an extra component $\eta' f_0$

Variable (x_i)	Signal (\mathcal{P})	Continuum (\mathcal{P})	$B\overline{B}$ background (\mathcal{P})
ΔE	G + G	P1	G + P1
$m_{ m ES}$	G + G	ARGUS	ARGUS + G + G
${\cal F}$	BG+G	BG + G	BG+G
$m_{\eta'}$	G + G	$P1 + (G+G)_{sig}$	$P1 + (G+G)_{sig}$
m_{K^*}	BW	$P2 + (BW)_{sig}$	$P2 + (BW)_{sig}$
$m_ ho$	BW	$P2 + (BW)_{\rm sig}$	$P2 + (BW)_{sig}$
$\cos heta_H$	P4	P4	EXP + P2

Toy Monte Carlo Studies

- Determine ML fit yield bias
- **Signal and** $B\overline{B}$ events embedded from SP5/6 MC
- Continuum $q\overline{q}$ events generated from PDFs

Mode	N_{total}	N_{sig}	$N_{B\overline{B}}$	N_{sig}	$N_{B\overline{B}}$	$\sigma(N_{sig})$	$\sigma(N_{B\overline{B}})$	bias
		(in)	(in)	(fi t)	(fi t)) (fi t)) (fi	[evts]
$\eta'_{\eta\pi\pi}K^{*0}$	4837	21	46	22.0 ± 0.3	42.9 ± 0.9	7.2	22.4	$+1.0\pm0.3$
$\eta'_{\rho\gamma}K^{*0}$	23790	25	409	34.5 ± 0.6	400.2 ± 5.2	14.2	122.7	$+9.5\pm0.6$
$\eta_{\eta\pi\pi}' K_{K^0\pi^+}^{*+}$	2114	10.8	16	11.6 ± 0.2	16.2 ± 0.5	3.8	10.7	$+0.8\pm0.2$
$\eta'_{\rho\gamma}K^{*+}_{K^0\pi^+}$	9962	12	231	14.9 ± 0.4	228.4 ± 2.8	9.7	70.2	$+2.9\pm0.4$
$\eta_{\eta\pi\pi}' K_{K^+\pi^0}^{*+}$	3020	4.5	46	5.5 ± 0.2	47 ± 0.8	4.9	17.2	$+1.0\pm0.2$
$\eta'_{\rho\gamma}K^{*+}_{K^+\pi^0}$	12996	5.5	337	3.2 ± 0.6	388.3 ± 3.0	11.7	66.5	-2.3 ± 0.6
$\eta'_{\eta\pi\pi} ho^+$	17287	38	266	51.5 ± 0.7	270.8 ± 2.7	15.7	60	$+13.5\pm0.7$
$\eta'_{\eta\pi\pi} ho^0$	13329	3.5	289	14.3 ± 0.7	294 ± 2	11.0	41.8	$+10.8\pm0.7$

Neutral Modes – $B^0 \rightarrow \eta' K^* / ho$

ML fi t quantity	$\eta_{\eta\pi\pi}K^{*0}$	$\eta'_{\rho\gamma}K^{*0}$	$\eta_{\eta\pi\pi}^{\prime} ho^0/\eta_{\eta\pi\pi}^{\prime}f_0$	$\eta'_{ ho\gamma} ho^0/\eta'_{ ho\gamma}f_0$	
Events to fi t	4837	23790	13329	40538	
signal yield	$22.6^{+7.7}_{-6.7}$	$35.1^{+14.2}_{-12.7}$	$14.9^{+10.6}_{-8.4}$ / $-2.6^{+6.0}_{-4.0}$	blind	
Fit $B\overline{B}$ yield	$45.8^{+24.3}_{-22.3}$	396^{+115}_{-115}	289^{+44}_{-43}	blind	
ML-fi t bias (events)	+1.7	+9.5	+11.2/-3.8	blind	
MC ϵ (%)	20.1	17.2	24.1/26.8	18.2/7.8	
Tracking corr. (%)	97.4	98.0	97.4	98.0	
Neutral corr. (%)	97.3	100.0	97.3	100.0	
Corr. ϵ (%)	19.0	16.9	22.8/25.4	17.8/7.6	
$\prod {\cal B}_i$ (%)	11.6	19.7	17.5/17.5	29.5/66.7	
Corr. $\epsilon imes \prod \mathcal{B}_i$ (%)	2.2	3.3	4.0/4.4	5.3/5.1	
Stat. sign. (σ)	4.1	2.2	0.4/0.2	blind	
$B(10^{-6})$	$4.1^{+1.5}_{-1.3}$	$3.3^{+1.9}_{-1.6}$	$0.4^{+1.2}_{-0.9}/0.1^{+0.6}_{-0.4}$	blind	
$UL\mathcal{B}(10^{-6})$	-	6.3	3.7/2.0	blind	
Combined results					
$\mathcal{B}(10^{-6})$	3.8^{+1}_{-1}	.1 + 0.5 .0 - 0.4	$0.4^{+1.2}_{-0.9}{}^{+1.6}_{-0.6}/0.1$	$+0.6+0.9 \\ -0.4-0.4$	
Signif.	Signif. 4.5		0.3/0.2		
UL $\mathcal{B}(10^{-6})$	_		3.7/2.0		

Charged Modes – $B^+ ightarrow \eta' K^* / ho$

ML fi t quantity	$\eta_{\eta\pi\pi} K_{K^0\pi^+}^{*+}$	$\eta'_{\rho\gamma}K^{*+}_{K^0\pi^+}$	$\eta_{\eta\pi\pi}' K_{K^+\pi^0}^{*+}$	$\eta'_{\rho\gamma}K^{*+}_{K^+\pi^0}$	$\eta'_{\eta\pi\pi} ho^+$	$\eta'_{\rho\gamma}\rho^+$
Events to fi t	2114	9962	3020	10467	17287	44094
Signal yield	$11.2^{+5.7}_{-4.5}$	$14.8^{+11.2}_{-9.7}$	$5.2^{+5.4}_{-3.6}$	$3.1^{+12.1}_{-9.6}$	$51.1^{+17.5}_{-16.0}$	blind
BB yield	$16.5^{+11.1}_{-9.4}$	228^{+72}_{-71}	46^{+22}_{-21}	337^{+74}_{-72}	265 ± 62	blind
ML-fit bias (events)	+0.8	+2.9	+1.0	-2.3	+13.5	blind
MC ϵ (%)	19.2	16.4	11.6	8.4	14.7	9.21
Tracking corr. (%)	97.9	98.5	97.9	98.5	97.9	98.5
K^0_S corr. (%)	98.2	98.1	-	-	—	—
Neutrals corr. (%)	97.3	100.0	94.3	97.0	94.7	97.5
Corr. ϵ (%)	18.0	15.8	10.7	8.0	13.6	8.61
$\prod {\cal B}_i$ (%)	4.0	6.8	5.8	9.8	17.5	29.5
Corr. $\epsilon \times \prod \mathcal{B}_i$ (%)	0.7	1.1	0.6	0.8	2.4	2.5
Stat. sign. (σ)	3.3	1.3	1.2	0.5	2.6	blind
$\mathcal{B}(10^{-6})$	$6.2^{+3.4}_{-2.7}$	$4.7^{+4.5}_{-3.9}$	$2.9^{+3.7}_{-2.6}$	$2.9^{+6.7}_{-5.4}$	$6.8^{+3.2}_{-2.9}$	blind
$UL\mathcal{B}(10^{-6})$	11.6	11.8	9.4	22.2	14.2	blind
$\mathcal{B}(10^{-6})$		$6.8^{+3.2}_{-2.9}$	$+3.9 \\ -1.3$			
Signif. w syst. (σ)		2.3				
UL $\mathcal{B}(10^{-6})$		7.9				

Projection plots

 $\rightarrow \eta'_{\eta\pi\pi} K^{*0}$ B^0

Projection plots

 $\rightarrow \eta'_{\eta\pi\pi} K^{*+}_{K^0\pi^+}$ B^+

Projection plots

 $\rightarrow \eta'_{\eta\pi\pi}\rho^+$ B^+

Likelihood ratio plots

- $\mathcal{L}_{sig}/[\mathcal{L}_{sig} + \sum \mathcal{L}_{bkg}]$ for all modes.
- Points are on-peak data,
- **•** background $q\overline{q}$ & $B\overline{B}$ expectation (pure toy)
- signal (pure toy) + background

Systematics – $B^0 \rightarrow \eta' K^* / ho$

Quantity	$\eta'_{\eta\pi\pi}K^{*0}$	$\eta'_{\rho\gamma}K^{*0}$	$\eta_{\eta\pi\pi}^{\prime} \rho^0 / \eta_{\eta\pi\pi}^{\prime} f_0$
Multiplicative errors (%)			
Track multiplicity (C)	1.0	1.0	1.0
Tracking effi ciency [C]	5.4	5.6	5.4
$\pi^0/\eta_{\gamma\gamma}/\gamma$ eff [C]	3.0	1.8	3.0
Number $B\overline{B}$ [C]	1.1	1.1	1.1
$\cos heta_T$ [C]	0.5	3.0	0.5
Branching fractions [U]	3.4	3.4	3.4/3.4
MC statistics [U]	0.6	0.6	0.5
Total multiplicative	7.3	7.6	7.2/7.2
Additive errors (events)			
Signal Model [U]	± 0.55	± 0.83	$\pm 1.2/0.48$
Fit bias [U]	± 0.90	± 4.8	$\pm 5.7/2.0$
$B\overline{B}$ background [U]	+0.82	+5.2	+14/3.6
Total additive (events)	$+1.3 \\ -1.1$	$+7.2 \\ -4.9$	$^{+15}_{-5.8}/^{+4.1}_{-2.0}$
Total errors $[\mathcal{B}(10^{-6})]$			
Total Additive	$^{+0.26}_{-0.21}$	$^{+0.93}_{-0.64}$	$^{+1.6}_{-0.62}/^{+0.40}_{-0.20}$
Uncorrelated	$+0.30 \\ -0.25$	$+0.94 \\ -0.65$	$^{+1.6}_{-0.62}/^{+0.40}_{-0.20}$
Correlated	± 0.26	± 0.22	$\pm 0.03/0.01$

Systematics – $B^+ \rightarrow \eta' K^* /
ho$

Quantity	$\eta_{\eta\pi\pi}' K_{K^0\pi^+}^{*+}$	$\eta'_{\rho\gamma}K^{*+}_{K^0\pi^+}$	$\eta_{\eta\pi\pi}' K_{K^+\pi^0}^{*+}$	$\eta'_{\rho\gamma}K^{*+}_{K^+\pi^0}$	$\eta'_{\eta\pi\pi}\rho^+$
Multiplicative errors (%)					
Track multiplicity [C]	1.0	1.0	1.0	1.0	1.0
Tracking effi ciency [C]	5.9*	6.1 *	3.9	4.1	4.0
$\pi^0/\eta_{\gamma\gamma}/\gamma~{ m eff}~[{ m C}]$	3.0	1.8	6.0	4.8	6.0
Number $B\overline{B}$ [C]	1.1	1.1	1.1	1.1	1.1
$\cos heta_T$ [C]	0.5	1.3	0.5	1.3	0.5
Branching fractions [U]	3.4	3.4	3.4	3.4	3.4
MC statistics [U]	0.6	0.6	0.8	0.9	0.7
Total multiplicative (%)	7.6	7.5	8.1	7.5	8.2
Additive errors (events)					
Signal model [U]	± 0.35	± 1.1	± 0.13	± 1.6	± 1.6
Fit bias [U]	± 0.45	± 1.5	± 0.54	± 1.3	± 6.8
$B\overline{B}$ background [U]	+0.2	+1.9	+0.3	+17	+20
Total additive (events)	$^{+0.60}_{-0.57}$	$^{+2.7}_{-1.9}$	$^{+0.63}_{-0.55}$	$^{+17}_{-1.6}$	$+21 \\ -7.0$
Total errors $[\mathcal{B}(10^{-6})]$					
Total Additive	$\begin{array}{c} +0.36\\ -0.34\end{array}$	$^{+1.1}_{-0.74}$	$^{+0.45}_{-0.40}$	$^{+9.4}_{-0.88}$	$+3.8 \\ -1.3$
Uncorrelated	$+0.42 \\ -0.40$	$^{+1.1}_{-0.76}$	$^{+0.46}_{-0.41}$	$^{+9.4}_{-0.88}$	$+3.8 \\ -1.3$
Correlated	± 0.42	± 0.31	± 0.27	± 0.19	± 0.5

Log likelihood scan plots

 $B^0 \to \eta' f_0(\to \pi^+\pi^-)$

Comparison to predictions

Central values agree well with QCD factorisation predictions

- Also agree with SU(3) numbers
- As expected $B^0 \rightarrow \eta' \rho^0$ is probably very small
- New upper limit for $B^0 \to \eta' f_0(\to \pi^+\pi^-)$

Decay mode	Theoretical predictions		Experimental results		results	
	SU(3) flavour	QCD fact.	HFAG	BaBar	Belle	New results
$B^0 \to \eta' K^{*0}$	$3.0^{+1.2}_{-0.3}$	$3.9^{+9.2}_{-5.1}$	< 7.6	< 7.6	< 20	$3.8^{+1.1}_{-1.0}^{+0.5}_{-0.4}$ (4.5 σ)
$B^+ \to \eta' K^{*+}$	$2.8^{+1.2}_{-0.3}$	$5.1^{+10.3}_{-5.9}$	< 14	< 14	< 90	$4.9^{+1.9}_{-1.7}^{+0.8}_{-0.7}$ (3.6 σ) < 7.9
$B^0 \to \eta' \rho^0$	$0.07\substack{+0.10 \\ -0.05}$	$0.01\substack{+0.12 \\ -0.06}$	< 4.3	< 4.3	< 14	$0.4^{+1.2+1.6}_{-0.9-0.6}$ (0.3 σ) < 3.7
$B^+ \to \eta' \rho^+$	$4.9^{+0.7}_{-0.7}$	$6.3^{+4.0}_{-3.3}$	< 22	< 22	_	$6.8^{+3.2}_{-2.9}{}^{+3.9}_{-1.3}$ (2.3 σ) < 14
$B^0 \to \eta' f_0 (\to$	$\pi^+\pi^-)$		_	_	_	$0.1^{+0.6}_{-0.4} + 0.9_{-0.4} (0.2 \sigma) < 2.0$

$$\mathcal{B}(B \rightarrow (\eta, \eta') \ (K^{(*)}, \pi, \rho)$$

Conclusions

- Measurement of $\eta' K^{*0}$ and evidence for $\eta' K^{*+}$
- New upper limits for $B^0 \to \eta' \rho^0$ and $B^+ \to \eta' \rho^+$
- ▶ Level of $B \to \eta' K$ enhancement wrt. $B \to \eta' K^*$

Decay mode $\mathcal{B}(10^{-6})$							
		η'	η				
	$B^0 \to \eta' K^{*0}$	$3.8^{+1.1+0.5}_{-1.0-0.4}$ (4.5 σ)	$B^0 \to \eta K^{*0}$	18.7 ± 1.7			
K^*	$B^+ \to \eta' K^{*+}$	$4.9^{+1.9}_{-1.7}_{-0.7} (3.6\sigma)$	$B^+ \to \eta K^{*+}$	$24.3^{+3.0}_{-2.9}$			
	$B^0 \to \eta' K^0$	63.2 ± 3.3	$B^0 \to \eta K^0$	< 1.9			
K	$B^+ \to \eta' K^+$	69.4 ± 2.7	$B^+ \to \eta K^+$	2.5 ± 0.3			